

Libration-driven flows in planetary cores and subsurface oceans

Jerome Noir (1), David Cebron (2), Michael Le Bars (2), and Jonathan Aurnou (3)

(1) Institute fur Geophysik, ETHZ, Zurich, Switzerland (jerome.noir@erdw.ethz.ch), (2) Institut de Recherche sur les Phenomenes Hors Equilibre, Aix-Marseille, France., (3) Earth and Space Sciences, UCLA, Los Angeles, USA.

Orbital dynamics that lead to forced longitudinal libration of celestial bodies also result in an elliptically deformed equatorial core-mantle boundary. In the present study, we investigate the effect of the topographic coupling on the flow in the liquid layers of a librating planet through a coupled numerical-experimental approach. We report the first evidence of libration-driven elliptical instability in a non-axisymmetric container. It is shown that intermittent turbulence, characteristic of such instabilities, is associated with an enhanced zonal flow. Outside of the resonant conditions, we observe a zonal flow that is well explained by Ekman boundary layer non-linear interactions and remains independent of the elliptical deformation of the container.