

NO₃ and N₂O₅ measurements via Cavity Ring Down Spectroscopy (CRDS) and Differential Optical Absorption Spectroscopy (DOAS) during DOMINO 2008

Jim Thieser (1,2) and the DOMINO Team

(1) Max Planck Institute for Chemistry, Mainz, Germany (Jim.Thieser@mpic.de), (2) Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany

The nitrate radical NO₃ and N₂O₅ play an important role in a number of atmospheric chemical processes at night-time, including conversion of NO_x to nitrate and the oxidation of VOC and DMS. During the DOMINO campaign 2008 in southern Spain, NO₃ and N₂O₅ were measured at ground level by CRDS. Long path DOAS was employed to measure NO₃, NO₂ and O₃ at three different heights. During most nights a strong vertical gradient in the NO₃ mixing ratio was observed, with the CRDS and DOAS data sets in reasonable agreement at ground level. Steady state turnover lifetimes of NO₃ were calculated as a function of average height above the ground.