

$\delta^{18}\text{O}$ shifts in water in contact with high volumes of CO₂ gas

Anssi Myrttinen, Veith Becker, Robert van Geldern, and Johannes A.C. Barth

GeoZentrum Nordbayern, Lehrstuhl für Angewandte Geologie, Erlangen, Germany (barth@geol.uni-erlangen.de)

In CO₂ injection projects, for instance in enhanced gas recovery (EGR), it is of vital importance to monitor the fate of injected CO₂ in the subsurface, in order to gain better understanding of the development of the geochemistry of the host reservoir. Injected CO₂ usually has different isotopic compositions than the water already present in the reservoir, respectively. Therefore, when CO₂ mixes with H₂O during CO₂ injection, an isotope exchange can be expected, with a shift in the isotope values towards the more dominantly present end member values of the CO₂ gas. In several studies, $\delta^{13}\text{C}$ has proven to be a well detectable and promising parameter in such monitoring schemes. However, so far $\delta^{18}\text{O}$ of both water and CO₂ is only beginning to be used as a key parameter in CO₂ monitoring. It is assumed, that the varying amounts of CO₂ gas in relation to the water can provoke different oxygen isotope shifts in the reservoir water.

Laboratory experiments were set up in order to achieve a better basic understanding in $\delta^{18}\text{OH}_2\text{O}$ -CO₂ interactions. Experiments were carried out at room temperature, low pressures (1400 mbar) and a CO₂:H₂O mole ratio of 617:1. First data show that within hours to days a significant negative $\delta^{18}\text{OH}_2\text{O}$ shift can be observed. This shift can be significantly enhanced in a dynamic environment induced by a shaker. These results indicate, that as long as enough CO₂ has been in contact with water, for a long enough period of time, $\delta^{18}\text{OH}_2\text{O}$ data can serve as an indicator of past and present CO₂-H₂O contact. Furthermore, extrapolation of $\delta^{18}\text{O}$ and CO₂-H₂O mole ratio data also holds promise to evaluate the amount of CO₂ that has been in contact with reservoir fluids. Future research will demonstrate if these changes can be detected on field scale.

This study was conducted as a part of the R&D programme CLEAN, which is funded by the German Federal Ministry of Education in the framework of the programme GEOTECHNOLOGIEN.