Mössbauer Spectroscopy and Electron Microscopy Investigation of the Martian Meteorite Dar al Gani 1037

Haraldur Páll Gunnlaugsson (1), Kristine Albers Olsen (2), Morten Bo Madsen (3), and Per Nørnberg (2)
(1) Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark (hpg@phys.au.dk), (2) Department of Earth Sciences, Aarhus University, DK-8000 Aarhus C, Denmark, (3) Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark

The Martian meteorite Dar al Gani 1037 was found in Libya in 1999 and has been classified as basaltic shergottite [1]. Here we present combined Mössbauer and electron microscopy investigation of a sample of the meteorite.

Backscatter scanning electron microscopy reveal large olivine grains (≈ 50-150 µm) showing fractures and compositional zoning from Fa35 (centre) to Fa45 (rim). Analysis of smaller pyroxene grains reveal great compositional diversity, from iron rich orthopyroxenes, pigeonite, and probably some less iron-rich augite. Glassy material between the grains shows composition corresponding to maskelynite and is interpreted as amorphized plagioclase.

The central part of the backscatter Mössbauer spectra can be analyzed in terms of three components due to Fe$^{2+}$ in olivine and pyroxenes and mineralogically unspecific Fe$^{3+}$. The pyroxene shows asymmetric broadening of lines, inconsistent with a single type of pyroxene in agreement with the compositional analysis.

The Mössbauer spectra are different from Mössbauer spectra obtained of basalt samples at Gusev Crater by the Mars Exploration Rovers [2]. The results show that Dar al Gani 1037 has formed under fractionated crystallization which also means that it has relatively high amount of mafic minerals.
