

$\delta^{13}\text{C}$ in the benthic bivalve shells as indicators of sedimentary organic carbon accumulation – A case study from the Western Continental Shelf of India

Josia Jacob and Prosenjit Ghosh

Centre for Earth Sciences, Indian Institute of Science, Bangalore – 560 012, India, e-mail:josia@ceas.iisc.ernet.in

Paired analysis of $\delta^{13}\text{C}_{\text{inorg}}$ and $\delta^{13}\text{C}_{\text{org}}$ was carried out in the surface sediments of the western continental shelf of India (WCSI) collected during late summer monsoon (LSM) and spring intermonsoon (SIM). The $\delta^{13}\text{C}_{\text{inorg}}$ was obtained by analysing the benthic bivalve shells of <2mm size and $\delta^{13}\text{C}_{\text{org}}$ was analysed after removing the inorganic components in the sediment by acid treatment. During LSM, the study region experienced upwelling and seasonal suboxia with greater accumulation of organic carbon in the surface sediments. During SIM, shelf waters were oligotrophic and oxygen saturated. Our observation shows isotopically lighter $\delta^{13}\text{C}_{\text{inorg}}$ for samples collected during LSM than during SIM. The average $\delta^{13}\text{C}_{\text{inorg}}$ during LSM and SIM was 0.29‰ and 0.80‰ respectively. The higher sedimentary organic carbon promotes greater microbial activity causing the pore-waters to be depleted in ^{13}C which leads to the depletion $\delta^{13}\text{C}$ of the inorganic benthic bivalve shells as well during LSM. The observed dissolved inorganic phosphate concentrations and ΔB (i.e. $\delta^{13}\text{C}_{\text{org}} - \delta^{13}\text{C}_{\text{inorg}}$) during the two sampling periods were used to simulate pCO_2 in surface water following the relationship given in Kump and Arthur (1999). The estimated pCO_2 showed a seasonal pattern with higher values during LSM compared to SIM which agrees with the seasonality in pCO_2 values of the surface waters documented from the region. However, the range in the variability of the predicted pCO_2 during the two sampling periods was higher than the reported values. This may be due to the mixing of the sedimentary organic matter with those from the terrestrial sources. The negative excursions observed in $\delta^{13}\text{C}_{\text{inorg}}$ along the western continental shelf indicate the potential of it being used as a proxy for sedimentary organic carbon accumulation observed especially along the hypoxic/anoxic zones.

Reference: Kump, L.R., Arthur, M. A., 1999. Interpreting carbon-isotope excursions: carbonates and organic matter. Chemical Geology 161, 181 – 198.