

Subterranean CO₂ ventilation and its role in net ecosystem exchange with the atmosphere

Enrique P. Sánchez-Cañete (1,2), Penélope Serrano-Ortiz (1,2), Andrew S. Kowalski (2,3), Cecilio Oyonarte (4), and Francisco Domingo (1)

(1) Departamento de Desertificación y Geo-ecología, Estación Experimental de Zonas Áridas – CSIC, Ctra. Sacramento s/n, 04120, Almería, Spain (enripsc@eeza.csic.es), (2) Grupo de Física de la Atmósfera, Centro Andaluz de Medio Ambiente (CEAMA), 18006, Granada, Spain, (3) Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain, (4) Departamento de Edafología y Química Agrícola, Universidad de Almería, Carrera Sacramento s/n, 04120, Almería, Spain

The FLUXNET community investigates “net ecosystem exchange” (NEE) and interprets CO₂ fluxes as a biological flux (photosynthesis and respiration), generally neglecting non-biological processes. These abiotic processes can temporally dominate the NEE in areas with carbonate soils [Kowalski, et al., 2008] when stored gaseous CO₂ can be exchanged with the atmosphere through the venting of subterranean spaces. However, the implications of ventilation processes for regional CO₂ budgets are still unknown. Here we analyze several episodes of soil CO₂ discharge and its connection with ventilation processes that occurred during a dry period in a carbonate ecosystem, we also examine their determinants and implications for the NEE measured with an Eddy Covariance system.

During the dry season of 2009 in a subhumid shrubland, two sensors measured CO₂ molar fraction in the soil (25 cm depth) and in a borehole penetrating 7 m into a bedrock outcropping. Ecosystem CO₂ fluxes were measured using an Eddy Covariance system, with quality control and gap filling performed according to Serrano-Ortiz et al., 2009 and Reichstein et al., 2005 respectively. Results highlight important events where rapid decreases of the soil and borehole CO₂ concentrations correlated very well with large emissions of CO₂ measured with the Eddy tower. These events occurred when the friction velocity reached high values and thus they can be associated with ventilation processes.