

Observations of atmospheric CH₄ and its carbon and hydrogen stable isotopic ratios in the upper troposphere over the western Pacific

Taku Umezawa (1), Shuji Aoki (1), Takakiyo Nakazawa (1), Toshinobu Machida (2), Hidekazu Matsueda (3), Yousuke Sawa (3), Kentaro Ishijima (4), and Prabir Patra (4)

(1) Tohoku University, Center for Atmospheric and Oceanic Studies, Graduate School of Science, Sendai, Japan
(taku@caos-a.geophys.tohoku.ac.jp, +81-22-795-5797), (2) National Institute for Environmental Studies, (3) Meteorological Research Institute, (4) Japan Agency for Marine-Earth Science and Technology

As part of the CONTRAIL project, Automatic air Sampling Equipment (ASE) has been used on board commercial airliners operated by Japan Airlines (JAL) for atmospheric trace gas measurements. The collection of air samples with ASE was made at least once a month between Sydney or Brisbane, Australia and Tokyo, Japan (Dec. 2005–Mar. 2009), between Tokyo and Guam (Apr. 2009–Mar. 2010), and between Honolulu and Tokyo (Apr.–Sep. 2010). In addition to CH₄ concentration, we newly started to analyze the air samples for carbon and hydrogen isotopic ratios ($\delta^{13}\text{C}$ and δD) of CH₄ in Dec. 2006. In the upper troposphere (UT) of the northern hemisphere (NH) ($>10^\circ\text{N}$), the seasonal minimum and maximum of the CH₄ concentration appeared in boreal winter–spring and summer, respectively. Influences of the stratospheric air intrusion event were observed in the CH₄ concentration, $\delta^{13}\text{C}$ and δD in the former season. The summertime high CH₄ concentrations were observed when the lower tropospheric (LT) CH₄ reaches a seasonal minimum in the NH, which implies that air masses with high CH₄ concentrations were transported to the NH-UT. Since such high CH₄ concentrations were often accompanied by low $\delta^{13}\text{C}$ and δD values, the air masses would be substantially influenced by isotopically depleted sources. By examining the relationships between $\delta^{13}\text{C}$ or δD and the CH₄ concentration observed in summer, $\delta^{13}\text{C}$ and δD values of possible sources were estimated to be $-51.7 \pm 1.2\text{‰}$ and $-262 \pm 43\text{‰}$ respectively. These values are higher than those reported for biogenic CH₄ but lower than those for CH₄ from fossil fuels and biomass burning. To examine where the sources for the high NH-UT CH₄ concentrations exit, we made tagged tracer experiments using an atmospheric chemistry transport model, assigning 15 source regions to the model surface. By inspecting the model results, which capture general features of the seasonal CH₄ cycles observed in the NH-UT, it was suggested that China and South Asia play important roles in the summertime high CH₄ concentrations in the NH-UT. A possible transport process is deep convection associated with Asian summer monsoon. In the UT over the tropics, temporal variations similar to those in the LT (our unpublished data) were observed not only for the CH₄ concentration but also for $\delta^{13}\text{C}$ and δD , presumably due to strong convective activity in that region. The seasonal cycles of the CH₄ concentration observed in the SH-UT ($>10^\circ\text{S}$) were similar to those observed in the LT; seasonal CH₄ minimum and maximum appeared in austral summer and winter–spring, respectively. On the other hand, temporal variations of $\delta^{13}\text{C}$ and δD were relatively irregular, compared to those in the LT which vary in almost opposite phase with the CH₄ concentration. The CH₄ concentration in the SH was higher in the UT than in the LT, which is ascribed to transport of the NH air to the SH through UT.