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Since the pioneering work of Stearns (1968), several studies have focused on the description and interpretation
of fracture patterns in reservoir-scale thrust-related anticlines (e.g. Srivastava and Engelder, 1990; Cooper, 1992;
Lemiszki et al. 1994; Tavani et al., 2006; Savage et al., In press). It is widely recognised that, during thrust-related
folding, fractures development results from the interplay of different factors, including the mechanical stratigraphy
(e.g. Corbett et al., 1987, Woodward and Rutherford, 1989; Gross, 1995; Couzens and Wiltschko, 1996; Fischer
and Jackson, 1999; Tavani et al., 2008), the environmental conditions (e.g. Chester et al., 1991; Jamison, 1992;
Lemiszki et al., 1994), and the folding process (e.g. Thorbjornsen and Dunne, 1997; Tavani et al., 2006). More
recently, many works have also documented how previously developed mesostructures exert a strong control on
fracturing (e.g. Silliphant et al., 2002; Bergbauer and Pollard, 2004; Bellahsen et al.,2006; Lash and Engelder,
2009). Investigating the role that mesostructural inheritances exert on fracture development is particularly
important in inversion-related anticlines, were the widespread presence of sin-extensional mesostructures can
strongly influence the sin-inversion fracturing.
In this work we present data from the Mataporquera Anticline (Western Pyrenees, Spain). This WNW-ESE
striking and ESE plunging anticline formed during the Cenozoic, when previously developed, mostly Early
Cretaceous, extensional structures were reworked. Seismic cross-sections across the structure allow to constrain
both Mesozoic and Cenozoic evolution of the shallower portion of the anticline. On the other hand, the same
cross-sections indicate that the tectonic style was fully thick-skinned, during both Mesozoic and Cenozoic.
The mesostructural pattern observed in the Mataporquera Anticline includes extensional faults, joints and veins
striking parallel and perpendicular to the Lower Cretaceous extensional master faults (ENE-WSW). These struc-
tures have been tilted together with beds during folding and are interpreted as sin-extensional (i.e. Mesozoic). Both
faults and joints have been, at places, re-worked as faults. This reworking was accompanied by the development
of other structures (E-W striking pressure solution cleavages and N-S striking extensional structures) allowing to
infer a Cenozoic stress field consistent with the reworking of the sin-extensional structures.
Cenozoic mesostructures are mostly observed in areas poorly affected by Mesozoic extensional deformation and
in the vicinity of major re-worked map-scale faults. On the other hand, in other sites, the inversion is testified only
by the reworking of previously developed mesostructures. These observations allow us to conclude that, in the
Mataporquera Anticline, the network of sin-extensional Mesozoic discontinuities inhibited the development of
sin-inversion mesostructures.
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