

Estimating N₂ fluxes from denitrification using isotopologue signatures of N₂O

Reinhard Well, Daniel Weymann, and Heinz Flessa

Johann Heinrich von Thünen-Institut, Federal Research Institute for Rural Areas, Forestry and Fisheries, Institute of Agricultural Climate Research, Braunschweig, Germany (reinhard.well@vti.bund.de, +49 531 596 2599)

There is few information on N₂ fluxes from denitrification in the field, because this process is difficult to measure in situ. Isotopologue signatures of N₂O such as $\delta^{18}\text{O}$, average $\delta^{15}\text{N}$ ($\delta^{15}\text{N}_{\text{bulk}}$) and ^{15}N site preference (SP = difference in $\delta^{15}\text{N}$ between the central and peripheral N positions of the asymmetric N₂O molecule) can be used to constrain the atmospheric N₂O budget and to characterize N₂O turnover processes including N₂O reduction to N₂. However, the use of this approach to study N₂O dynamics in soils requires knowledge of isotopologue fractionation factors (ε) for the various partial processes involved, e.g. N₂O production by nitrification or denitrification, N₂O reduction by denitrification and diffusive transport. The aim of our study was to investigate whether isotopologue signatures of soil-emitted N₂O can be used to estimate N₂O reduction, and accordingly N₂ formation.

Two arable soils were fertilized with NO₃⁻ and incubated anaerobically in a closed laboratory system until all NO₃⁻ was converted to N₂. Similar incubations were conducted with a water-saturated arable peat soil and sediment from a sandy aquifer.

The time courses of N₂O and its isotopologues were monitored during the reaction progress of denitrification. N₂ production was estimated from $^{15}\text{N}_2$ accumulation during parallel incubation experiments, where materials were fertilized with ^{15}N -labelled NO₃⁻.

ε of the NO₃-to-N₂O step was derived from isotopologue signatures obtained from replicates where N₂O reduction was absent under the presence of C₂H₂. ε of N₂O reduction to N₂ was estimated by modeling the time course of N₂O and its isotopologues. For this purpose, ε of the NO₃-to-N₂O step and production rates of N₂O and N₂ were used as independent model parameters and ε of N₂O reduction to N₂ was estimated by fitting.

Fractionation factors of this study will be compared to literature data and the consequences for estimating N₂ fluxes based on N₂O isotopologues will be discussed.

References:

Jinuntuya-Nortman, M., R.L. Sutka, P.H. Ostrom, H. Gandhi and N.C. Ostrom (2008), Isotopologue fractionation during microbial reduction of N₂O within soil mesocosms as a function of water-filled pore space, *Soil Biology & Biochemistry* 40, 2273–2280.

Park, S., T. Pérez, K.A. Boering, S.E. Trumbore, J. Gil, S. Marquina, and S.C. Tyler (2011), Can N₂O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N₂O production and consumption in tropical soils?, *Global Biogeochemical Cycles*, 25, GB1001, doi:10.1029/2009GB003615.

Well, R., Flessa H., Lu, X., Ju, X., Römhild, V (2008a), Isotopologue ratios of N₂O emitted from microcosms with NH₄⁺ fertilized arable soils under conditions favoring nitrification, *Soil Biology and Biochemistry* 40, 2416–2426.

Well, R., Flessa, H. (2008b), Isotope fractionation factors of N₂O diffusion, *Rapid Communications in Mass Spectrometry* 22, 2621–2628.

Well, R., Flessa, H. (2009), Isotopologue signatures of N₂O produced by denitrification in soils, *J. Geophys. Res.*, 114, G02020, doi:10.1029/2008JG000804.