

Comparison of sediment transport formulae 2DH simulation of several storms on a sandy beach

Philippe Larroudé (1), Mehdi Daoui (1), Nicolas Robin (2), and Raphaël Certain (2)

(1) UJF, LEGI, Grenoble, France, (2) CEFREM, Université de Perpignan via Domitia, 52 av. Paul Alduy, 66860 Perpignan, France

This paper discusses the abilities of numerical models to predict the morphodynamics over loose and rigid beds. In the first part the sediment transport model is presented which solves the bed evolution equation in conjunction with sediment transport formulas. The flow field and the water depth are calculated using the depth-averaged hydrodynamic model TELEMAC-2D developed by Électricité de France

The work consisted in setting up the methodology of calculation (De Vriend and Stive (1987). The principle is to make an external coupling of three codes. This coupling consists in enchainned Artemis for swells, Telemac2d for the currents and Sisyphe for the morpho-dynamic evolution (Hervouet J.M., 2007). The basic principle of this external coupling is to make this loop on the codes with a step of morpho-dynamic time depending essentially on weather conditions and on the hydrodynamic forcing of the studied beach. These models were used in the framework of a simulated meteorological cycle describing the seasonal evolution of hydrodynamic factors.

The objectives which we want to reach during this study are multiple. First, we are going to set up a procedure of linking of three codes to be able to simulate realistic climates. This procedure is validated from the point of view of the hydrodynamics and morpho-dynamic evolution (Larroudé, 2008). This technique of simulation will then use to compare and studied the contribution of the various formulae of sedimentary transport (as in Camenen and Larroudé (2003) on the site of Sète during two specific storm (Certain and Barusseau (2006)). We improve this methodology to simulate the Rising-Apex-Waning of a Storm event. We also present a comparison of the velocity at these different periods of the storm.

Acknowledgements

This work has been supported by French program RELIEF MICROLIT and French Research National Agency (ANR) through the Vulnerability Milieu and Climate program (project VULSACO, n° ANR-06-VMC-009)

References

Camenen, B. and Larroudé, Ph., 2003, Comparison of sediment transport formulae for a coastal environment, *Journal of Coastal Engineering*, 48, pp. 111-132.

Certain, R. and Barusseau J.P., 2006, Conceptual modelling of straight sand bars morphodynamics for a microtidal beach (Gulf of Lions, France), ICCE 2006, San Diego.

De Vriend, H.J. and Stive M.J.F., 1987. Quasi-3D Modelling of Nearshore Currents. *Coastal Engineering*, 11: 565-601.

Gervais M., Balouin Y., Belon R., Certain R., Robin N., Berne S., Impacts des tempêtes sur la morphologie d'un littoral microtidal : le site du Lido de Sète à Marseillan, Golfe du Lion. DOI:10.5150/jngcgc.2010.032-G, pp. 263-274.

Hervouet, J.M., Hydrodynamics of Free Surface Flows: Modelling With the Finite Element Method, 2007, John Wiley and Sons, 360p.

Larroudé Ph., 2008, Methodology of seasonal morphological modelisation for nourishment strategies on a Mediterranean beach. *Marine Pollution Bulletin* 57, pp 45-52.