

A multidisciplinary approach to identify thermohaline circulation under an East-Antarctic ice shelf

Frank Pattyn (1), Kenichi Matsuoka (2), Denis Callens (1), Howard Conway (3), David Docquier (1), Mathieu Depoorter (1), Bryn Hubbard (4), Denis Samyn (5), and Jean-Louis Tison (1)

(1) Universite Libre de Bruxelles, Lab. de Glaciologie (DSTE), Brussels, Belgium (fpattyn@ulb.ac.be, +32 (0)2 650 22 26),
(2) Norwegian Polar Institute, Tromso, Norway, (3) Department of Earth and Space Sciences, University of Washington, Seattle, USA, (4) Centre for Glaciology, Institute of Geography & Earth Sciences, Aberystwyth University, Ceredigion, UK, (5) Glaciology Research Group, Geocentrum LUVAL, University of Uppsala, Uppsala, USA

Ice-penetrating radar profiling across the grounding line of an ice rise promontory in Dronning Maud Land, Antarctica, and ice core drilling in the adjacent ice shelf revealed the existence of a thermohaline circulation underneath an ice shelf in an area of shallow water depth (<300 m). This is significant because the bulk of evidence of such ice-ocean interactions under ice shelves stems from either large ice shelves or deep troughs within the continental shelf (e.g. Deep Thermohaline Circulation). Sub-ice melting at the grounding line was detected from the unusual dipping of englacial radar reflectors in the radar profiles. Inverse modeling attributed this dipping to a constant melting rate of $\approx 15 \text{ cm a}^{-1}$. In the adjacent ice shelf, several meters of marine ice accretion were detected in a rift system close to the ice rise promontory, based on ice core drilling and televIEWer observations of the borehole. For the remainder of the ice shelf, accretion is probably limited (<5 m) as calculated from the combined GPS and radar data.