

FLOREO – a system for flash flood monitoring and forecasting in the Czech Republic

Lukas Brodsky (1), Radka Kodesova (2), Katerina Spazierova (1), Jirka Simunek (3), and Miroslav Sejna (4)

(1) Remote Sensing Department, GISAT, Praha, Czech Republic (lukas.brodsky@gisat.cz), (2) Department of Soil Science and Soil Protection, Czech University of Life Sciences Prague, Prague, Czech Republic, (3) Department of Environmental Sciences, Riverside, USA, (4) PC-Progress s.r.o., Prague, Czech Republic

Currently flood monitoring and forecasting systems are mostly based on weather station and stream water flow point data measurements. These systems exhibit some level of uncertainty. Some portion of uncertainty is in the rainfall prediction and other comes from imperfect data use in the models. A new FLOREO system (www.floreo.cz) has been designed to support existing hydrological monitoring activities by implementation of relevant Earth observation services in the Czech Republic. FLOREO concept is based on detailed hydrological water balance. Snow monitoring is implemented as hybrid model based on Terra MODIS, Envisat ASAR and in-situ data (Brodký et al., 2010). Snow melt is calculated by degree day factor snow melt model according to WMO (1986). Water interception on vegetation is assessed from a land cover and a leaf area index (LAI), which is estimated by Terra MODIS data (Brodký et al., 2010). Potential evapotranspiration is calculated using climatic and vegetation data. Runoff (e.g. potential flooding) is calculated using the CN-curve. Since the CN value depends not only on land use types, hydrologic soil groups, management practice and slope, but also on the actual soil water content, the average CN values (values for average soil water content conditions) are modified similarly to Kryšářová et al. (2000). However, different numerical model, the one-dimensional model HYDRUS-1D (Šimůnek et al., 2008a,b), is used to simulate daily soil water regimes within the soil profiles. The HYDRUS-1D code was simplified for this purpose.

Thus FLOREO system provides not only information about the actually monitored data, but also data simulated using actual data, and data predicted for the next day like critical precipitation potentially causing surface runoff, potential runoff simulated for several precipitation scenarios etc.

Acknowledgement: The study has been done under the ESA PECS project FLOREO, Demonstration of ESA Environments in support to FLOod Risk Earth Observation monitoring project framework.

Brodký, L., Kodešová, R. Spazierová, K. (2010): Synergy of earth observation and in-situ monitoring data for flood hazard early warning system. The 2010 European Space Agency Living Planet Symposium. Bergen, Norway, 28 June - 2 July 2010.

Kryšářová V., Wechsung F., Arnold J., Srinivasan R., Williams J. (2000): SWIM (Soil and Water Integrated Model). User Manual. Version SWIM-8. Potsdam Institute for Climate Impact Research, Postdam, Germany.

Šimůnek J., Šejna M., Saito H., Sakai M., van Genuchten M.Th. (2008a): The HYDRUS-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, Version 4.0, HYDRUS Software Series 3, Department of Environmental Sciences, University of California Riverside, Riverside, California, USA, pp. 315

Šimůnek J., van Genuchten M. Th. 2008b. Modeling nonequilibrium flow and transport with HYDRUS. Vadose Zone Journal, 7 (2): 782-797.