

The Role of Atmosphere Feedbacks During ENSO in AMIP CMIP3 Simulations

James Lloyd (1,2), Eric Guilyardi (1,2), and Hilary Weller (1)

(1) Department of Meteorology / NCAS-Climate, University of Reading, UK (swr07jbl@reading.ac.uk), (2) LOCEAN/IPSL (CNRS/UPMC/IRD), Paris, France

Although most present-day GCMs exhibit ENSO-like variability, there is still room for improvement. For example, models exhibit a large diversity in ENSO amplitude and time scale, as well as SST variability that extends too far westwards, the reasons for which are difficult to pin down. However, recent results suggest that the atmosphere model plays a dominant role in determining ENSO properties in GCMs.

Theory separates the main ENSO atmospheric processes into two linear feedbacks: 1) the Bjerknes positive feedback (μ), and 2) the thermodynamical damping (α). These respectively measure the remote zonal wind stress and local heat flux response to an eastern Pacific SST anomaly.

We analyse μ and α in AMIP simulations in order to isolate the atmosphere model errors. We find that the AMIP runs generally have improved feedbacks compared to the coupled runs previously studied. The shortwave (α_{SW}) and latent heat (α_{LH}) flux feedbacks are the two dominant components of α , and biases in α_{SW} are the main source of α errors.

Most models underestimate the negative α_{SW} in the East Pacific, primarily due to an overly strong low-cloud positive feedback. Using a 'feedback decomposition method' we show that biases in the cloud response to dynamical changes dominate the α_{SW} biases. Analysis of the cloud radiative forcing in the East Pacific reveals model biases in low cloud amount and optical thickness that may affect α_{SW} .

We further show that the AMIP α_{LH} feedback exhibits less diversity than α_{SW} and is primarily driven by variations in the near-surface specific humidity difference.