Geophysical Research Abstracts Vol. 13, EGU2011-5124, 2011 EGU General Assembly 2011 © Author(s) 2011

Comparison of \mathbf{CO}_2 fluxes from mixing ratio and mass density with a closed-path gas analyzer

Taro Nakai, Hiroki Iwata, and Yoshinobu Harazono International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, United States (tnakai@iarc.uaf.edu)

The new type closed-path CO_2/H_2O infrared gas analyzer (LI-7200, LI-COR) enables us to calculate CO_2 fluxes from both mixing ratio and mass density of CO_2 . The analyzer allows us to do this because it measures both temperature and pressure in the cell simultaneously with concentration of CO_2 . After WPL correction was applied, both fluxes were almost in accord with each other. However, CO_2 flux from mass density with the WPL correction tended to be slightly larger than that from mixing ratio, which resulted in a significant difference in cumulative CO_2 fluxes. This difference was explained by the pressure covariance term, which is omitted in the WPL correction. In other words, it was experimentally confirmed that the measurement of CO_2 flux from mixing ratio was consistent with that from mass density with the WPL correction including the pressure covariance term. Therefore, the mixing ratio is preferable for calculation of CO_2 flux with a closed-path gas analyzer.