

Thermal elasticity promotes failure in the brittle-ductile crust

Christoph Schrank (1,2), Florian Fusseis (1,2), Ali Karrech (3,4), Klaus Regenauer-Lieb (1,2,3)

(1) The University of Western Australia, Multiscale Earth System Dynamics, School of Earth and Environment, 35 Stirling Highway, Crawley, 6009, WA, Australia (cschrank@cyllene.uwa.edu.au), (2) Western Australian Geothermal Centre of Excellence, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia, (3) CSIRO, Earth Science and Resource Engineering, 26 Dick Perry Avenue, Kensington, 6151, WA, Australia, (4) School of Civil and Resource Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia

Heating and cooling of rocks may lead to high internal stresses because contact stresses arise at the grain scale due to geometric mismatch between minerals with different and/or anisotropic thermal expansivities. Although thermally induced elastic stresses attracted large interest in rock mechanics, nuclear waste disposal, resource recovery and stimulation, they have never been considered as a candidate for the criticality of the continental crust on longer time scales. This is because it was assumed that thermal stresses are relaxed efficiently by temperature-activated creep in the ductile regime. However, viscous relaxation is a time-dependent process. Therefore, it may be possible that thermal-elastic stresses reach considerable magnitudes and lifetimes even in regions of the crust where ductile creep occurs. We tested this hypothesis with 1D and 2D grain-scale numerical experiments on granitic rock. The latter were calibrated with literature data from physical heating experiments on Westerly granite and with a time-lapse 3D high-resolution synchrotron X-ray tomography heating experiment. We found that deviatoric thermal-elastic stresses can easily reach magnitudes > 100 MPa and lifetimes from hundreds of thousands to millions of years in subsiding rock. Thus, thermally induced stresses may have a long-lasting impact on tectonics and the seismic cycle. They may bring the brittle-ductile crust close to criticality.