

3D Seismic Analysis of Geometry and Spatial Distribution of Seismic Chimney in the Ulleung Basin, East sea of Korea

Nyeon Keon Kang (1), Dong-Geun Yoo (1), Bo Yeon Yi (2), and Byong-Jae Ryu (1)

(1) Petroleum & Marine Research Division, Korea Institute of Geoscience and Mineral Resources, 92 Gwahang-no, Yuseong-gu, Daejeon, 305-350 Korea (nkkang@kigam.re.kr), (2) Department of Energy Resources Engineering, Pukyong National University, Busan 608-737, Korea

Analysis of seismic data acquired in the Ulleung Basin, East Sea of Korea reveals a number of seismic chimneys characterized by velocity pull-up and reduced reflectivity. These seismic chimneys probably result from fluid-gas upwelling into the gas hydrate stability zone. Based on the geometry and distribution patterns, seismic chimneys in the study area can be divided into two groups. Group 1 is characterized by seismic chimneys vertically grown to near surface with sub-circular geometry, whereas Group 2 is characterized by seismic chimneys buried within subsurface with elliptical geometry. According to their distribution pattern, Group 1 is dominant in SE part of the study area, where fault system is rarely developed, while Group 2 is dominant in NW part of the study area, characterized by vertically faulted system within the strata. Group 1 shows a large dimension and low frequency of occurrence, whereas Group 2 shows relatively small dimension and high frequency of occurrence. These results suggest that Group 1 is interpreted as high flux seismic chimney, while Group 2 is interpreted as low flux seismic chimney associated with vertically faulted system.