

Empirical orthogonal functions in soil CO₂ efflux mapping

Alexander Graf (1), Michael Herbst (1), Lutz Weihermüller (1), Johan A. Huisman (1), Nils Prolingheuer (1), Ludger Bornemann (1), and Harry Vereecken (1)

(1) Agrosphere (IBG-3), Forschungszentrum Jülich, Germany (a.graf@fz-juelich.de), (2) Institute of Crop Science and Resource Conservation - Soil Science, University Bonn, Germany

Empirical orthogonal functions (EOF) derived from a principal component analysis (PCA) have successfully been used to identify recurring spatial patterns in repeated grid sampling datasets of soil moisture in the past (Perry and Niemann, 2008; Korres et al., 2010). Here, we test in a case study whether the same applies to field-scale datasets of soil CO₂ efflux, which are known to challenge geostatistical analysis and modelling (Rochette et al., 1991; La Scala et al., 2000; Rodeghiero and Cescatti, 2008; Herbst et al., 2009).

Our test dataset consists of chamber measurements on 28 dates within a transect of 18 points spaced 10 m apart on a gently sloping mid-latitude bare soil field. Transformation of the 28 single-date patterns into few dominant EOFs could indeed improve the (geo)statistical analysis and empirical modelling of spatiotemporal CO₂ efflux variability. In particular, the first EOF exhibited a much smaller nugget effect in the semivariogram, and clearer statistical relations to soil properties, than most single surveys. However, unlike for many other variables, for soil CO₂ efflux PCA qualified a very large portion (about 50%) of the total spatiotemporal variability as "noise", i.e. as variability associated neither with spatial autocorrelation nor with spatial correlation to soil properties. This is supported by cross validation, which indicates that only the first EOF (32% variance) definitely improves the predictive skills of an EOF-based regression model as well as of a Canonical Correlation based model (Graf et al., submitted). The non correlated half of spatiotemporal variability is not necessarily due to random measurement errors, but to a (hypothetically greater) part to fluctuations on a too small spatial and/or temporal (Graf et al., 2011) scale. The correlated half indicated that at our site, temperature was the most important driver of temporal variability of the spatial average of soil CO₂ efflux, while soil moisture was the most important driver of spatial variability. Both the temperature and the moisture dependence were in agreement with common model assumptions. Relations to soil biochemical parameters, on the other hand, were weak and sometimes counter-intuitive.

References

Graf, A., N. Prolingheuer, A. Schickling, M. Schmidt, K. Schneider, D. Schüttemeyer, M. Herbst, J.A. Huisman, L. Weihermüller, B. Scharnagl, C. Steenpass, R. Harms, and H. Vereecken. 2011. Temporal downscaling of soil CO₂ efflux measurements based on time-stable spatial patterns. *Vadose Zone J.*, in press.

Graf, A., Herbst, M., Weihermüller, L., Huisman, J.A., Prolingheuer, N., Bornemann, L., Vereecken, H. Analyzing spatiotemporal variability of heterotrophic soil respiration at the field scale using orthogonal functions. Submitted to *Geoderma*.

Herbst, M., Prolingheuer, N., Graf, A., Huisman, J.A., Weihermüller, L., Vanderborght, J., 2009. Characterisation and understanding of bare soil respiration spatial variability at plot scale. *Vadose Zone J.* 8, 762-771.

Korres, W., Koyama, C.N., Fiener, P., Schneider, K., 2010. Analysis of surface soil moisture patterns in agricultural landscapes using Empirical Orthogonal Functions. *Hydrol. Earth Syst. Sci* 14, 751-764.

La Scala, N., Marques, J., Pereira, G.T., Cora, J.E., 2000. Short-term temporal changes in the spatial variability model of CO₂ emissions from a Brazilian bare soil. *Soil Biol. Biochem.* 32, 1459-1462.

Perry, M.A., Niemann, J.D., 2008. Generation of soil moisture patterns at the catchment scale by EOF interpolation. *Hydrol. Earth Syst. Sci.* 12, 39-53.

Rochette, P., Desjardins, R.L., Pattey, E., 1991. Spatial and temporal variability of soil respiration in agricultural fields. *Can. J. Soil Sci.* 71, 189-196.

Rodeghiero, M., Cescatti, A., 2008. Spatial variability and optimal sampling strategy of soil respiration. *For. Ecol. Manage.* 255, 106-112.