

Modeling gross primary production of maize cropland and degraded grassland in northeastern China using multi-temporal MODIS imagery and CO₂ eddy flux tower data

Zheng Wang (1,2), Xiang-ming Xiao (3), and Xiao-dong Yan (4)

(1) Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China (wangzheng@mail.tea.ac.cn), (2) Graduate University of the Chinese Academy of Sciences, Beijing, China (wangzheng@mail.tea.ac.cn), (3) Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China (yxd@tea.ac.cn), (4) Department of Botany and Microbiology, Center for Spatial Analysis, University of Oklahoma Norman, Oklahoma, USA (xiangming.xiao@ou.edu)

CO₂ flux measurements at individual CO₂ eddy flux sites provide valuable information on the seasonal dynamics of gross primary production (GPP). In this study, we estimated seasonal dynamics of GPP from 3 years (2004-2006) of the eddy covariance observations at maize cropland and degraded grassland in a semi-arid area of Tongyu county (44.5667N, 122.8833E), Northeast China. The biophysical performance of vegetation indices (EVI, NDVI, and LSWI) derived from the 8-day Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance product and their relations to GPP dynamics were evaluated. The quantitative relationships between the vegetation indices and CO₂ flux data clearly demonstrated the improvement of EVI over NDVI, in terms of the phase and magnitude of photosynthesis. Canopy-level maximum light use efficiency, ε_0 , was estimated for both maize and grassland by using the observed CO₂ flux data and photosynthetically active radiation (PAR) data from eddy flux tower sites. For maize cropland, the ε_0 value is 0.560 g C/mol PAR, and for degraded grassland, the ε_0 value is 0.372 g C/mol PAR. We conducted a simulation of the Vegetation Photosynthesis Model (VPM) using the Enhanced Vegetation Index (EVI) and the Land Surface Water Index (LSWI) derived from the 8-day (MODIS) surface reflectance product, as well as site-specific climate data. The comparison between simulated GPP and estimated GPP from tower CO₂ flux data showed good agreement in both maize cropland and degraded grassland. This study highlighted the biophysical performance of improved vegetation indices in relation to GPP and demonstrated the potential of the satellite-driven VPM model for scaling-up of GPP of maize cropland and grassland in semi-arid ecosystems.