

Properties of solar activity derived from cosmogenic radionuclides

Jose Angel Abreu (1), Friedhelm Steinilber (1), Jürg Beer (1), Ken McCracken (2), Antonio Ferriz-Mas (3,4)

(1) Eawag, Swiss Federal Institute of Aquatic Science and Technology, Postfach 611, CH-8600 Duebendorf, Switzerland
(jose.abreu@eawag.ch), (2) University of Maryland, US (jellore@hinet.net.au), (3) Universidade de Vigo, Ourense, Spain
(antonio.ferriz@googlemail.com), (4) Instituto de Astrofísica de Andalucía (IAA/CSIC), Granada, Spain

Understanding the Sun's magnetic activity is important, among other reasons, because of its impact on the Earth's environment. The sunspot record since 1610 shows cycles of magnetic activity with an irregular distribution of amplitudes and with a periodicity around 11 years; they are modulated on longer timescales and were interrupted by the Maunder minimum in the 17th century.

During the past several cycles the average activity was very high. This raises the question whether the present period of high solar activity is likely to terminate soon or even to be followed by another (Maunder-like) grand minimum.

Using cosmogenic radionuclides such as ^{10}Be in ice cores, changes in the open magnetic field of the Sun can be traced back many thousand of years providing unprecedented information about the history of solar activity. The record of solar activity derived from ^{10}Be can provide a number of constraints for solar dynamo models as well as helping answer questions related to solar activity.

A detailed statistical analysis of the cosmogenic record allows us to demonstrate that the recent period of high solar activity is indeed coming to an end. Frequency analysis of the solar modulation potential reveals the presence of significant periodicities, namely around 2200 years (Hallstatt), 980 y (Eddy), 208 y (de Vries) and 90 y (Gleissberg.)

Using these results, the main properties of the solar activity for the past 10,000 years will be discussed.