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Stratospheric CO2 possesses a large oxygen isotope anomaly [1], whereas the oxygen isotope composition of
tropospheric CO2 is to a great extent controlled by mass-dependent oxygen isotope exchange between CO2 and
water in plants [2]. Thus, investigations of the CO2-water equilibrium are essential to understand the triple oxygen
isotope signature of tropospheric CO2. High precision analysis of the ∆17O signature of tropospheric CO2 is
a valuable tool to investigate the terrestrial gross carbon fluxes [3] and to test predictions on the stratosphere-
troposphere exchange flux. Here, we present data on the exponent β for equilibrium fractionation between CO2(g)

and water at 2, 23 and 37˚C and data on ∆17O of tropospheric CO2. The analytical data on ambient air CO2

sampled in Göttingen (Germany) are compared to an oxygen isotope mass-balance model for tropospheric CO2.

For each CO2-water equilibration experiment, about 14 mmol of CO2 were equilibrated with 3.3 mol of local
distilled tap water (molar H2O(l)/CO2(g) ratio > 200). We conducted 1 experiment at 2˚C, 5 experiments at 23˚C
and 4 experiments at 37˚C. The triple oxygen isotope composition of CO2 was analyzed based on CO2-CeO2

equilibration and subsequent mass spectrometric analysis of CeO2 by infrared laser fluorination [4]. Each CO2

analysis is based on 3-5 CeO2 analyses. We assume that our tap water (δ18O = –8.1h ) falls on the meteoric
water line with a slope of β = 0.528 and an intercept of γ = +0.033h [5]. β (CO2-water) was determined as
0.5196±0.0008 (1σ), 0.5220±0.0008 (1σ) and 0.5214±0.0008 (1σ) at 2, 23 and 37˚C, respectively. Thus, the
data do not show a temperature dependence in the investigated temperature range. The experimentally determined
exponent β (for 2˚C ≤ t ≤ 37˚C) is significantly lower than the high temperature limit of 0.529 [6].

Taking into account that β (CO2(g)-H2O(g)) = 0.5235 [7], β (H2O(l)-H2O(g))=0.529 [8], αCO2(g)−H2O(l)=1.041
[9] and αH2O(l)−H2O(g)=1.009 [10] at 25˚C, one can estimate the exponent β (CO2(g)-water) as 0.522±0.001.
This demonstrates that our experimental results are consistent with theoretical and experimental data on β (CO2(g)-
H2O(g)) and β (H2O(l)-H2O(g)) [7, 8].

CO2 from ambient air was sampled in 2-week intervals starting in August 2010 in Göttingen. The CO2 was ex-
tracted from about 450 L air using a Russian doll type cryogenic trap [11]. The CO2 was dried using P2O5 and
Mg(ClO4)2. Subsequently, the CO2 was analyzed for its triple oxygen isotope composition using the CO2-CeO2

exchange method [4]. All data on ∆17O are given relative to the rocks- and minerals defined terrestrial fraction-
ation line with a slope of 0.5251±0.0007 and an intercept of –0.014±0.008h . Each CO2 sample was analyzed
with a precision < ±0.04h . The ∆17O of ambient air CO2 is on average –0.09±0.04h (N=11). Our results are
0.11h higher than the prediction from Hoag et al. [3] who give ∆17O of global tropospheric CO2 of –0.20 h
(relative to our TFL). We reevaluated the model from Hoag et al. [3] assuming that CO2 from the hydro- and bio-
sphere fractionates mass-dependently according to our experimentally determined exponent β (CO2(g)-H2O(l)).
The model allows us to estimate the effect of CO2 influx from the stratosphere, biosphere and hydrosphere on the
global triple oxygen isotope composition of tropospheric CO2.
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