Geophysical Research Abstracts Vol. 13, EGU2011-6161, 2011 EGU General Assembly 2011 © Author(s) 2011 ## Temperature dependence of the triple oxygen isotope equilibrium fractionation between carbon dioxide and water and its implication on the triple oxygen isotope signature of tropospheric carbon dioxide Magdalena Hofmann, Balázs Horváth, Sören Hinrichsen, and Andreas Pack University of Göttingen, Germany (magdalena.hofmann@geo.uni-goettingen.de) Stratospheric CO_2 possesses a large oxygen isotope anomaly [1], whereas the oxygen isotope composition of tropospheric CO_2 is to a great extent controlled by mass-dependent oxygen isotope exchange between CO_2 and water in plants [2]. Thus, investigations of the CO_2 -water equilibrium are essential to understand the triple oxygen isotope signature of tropospheric CO_2 . High precision analysis of the $\Delta^{17}O$ signature of tropospheric CO_2 is a valuable tool to investigate the terrestrial gross carbon fluxes [3] and to test predictions on the stratosphere-troposphere exchange flux. Here, we present data on the exponent β for equilibrium fractionation between $CO_{2(g)}$ and water at 2, 23 and 37°C and data on $\Delta^{17}O$ of tropospheric CO_2 . The analytical data on ambient air CO_2 sampled in Göttingen (Germany) are compared to an oxygen isotope mass-balance model for tropospheric CO_2 . For each CO₂-water equilibration experiment, about 14 mmol of CO₂ were equilibrated with 3.3 mol of local distilled tap water (molar $H_2O_{(l)}/CO_{2(g)}$ ratio > 200). We conducted 1 experiment at 2°C, 5 experiments at 23°C and 4 experiments at 37°C. The triple oxygen isotope composition of CO₂ was analyzed based on CO₂-CeO₂ equilibration and subsequent mass spectrometric analysis of CeO₂ by infrared laser fluorination [4]. Each CO₂ analysis is based on 3-5 CeO₂ analyses. We assume that our tap water ($\delta^{18}O = -8.1\%$) falls on the meteoric water line with a slope of $\beta = 0.528$ and an intercept of $\gamma = +0.033\%$ [5]. β (CO₂-water) was determined as 0.5196 ± 0.0008 (1σ), 0.5220 ± 0.0008 (1σ) and 0.5214 ± 0.0008 (1σ) at 2, 23 and 37°C, respectively. Thus, the data do not show a temperature dependence in the investigated temperature range. The experimentally determined exponent β (for 2°C \leq t \leq 37°C) is significantly lower than the high temperature limit of 0.529 [6]. Taking into account that β (CO_{2(g)}-H₂O_(g)) = 0.5235 [7], β (H₂O_(l)-H₂O_(g))=0.529 [8], $\alpha_{CO2(g)-H2O(l)}$ =1.041 [9] and $\alpha_{H2O(l)-H2O(g)}$ =1.009 [10] at 25°C, one can estimate the exponent β (CO_{2(g)}-water) as 0.522±0.001. This demonstrates that our experimental results are consistent with theoretical and experimental data on β (CO_{2(g)}-H₂O_(g)) and β (H₂O_(l)-H₂O_(g)) [7, 8]. CO_2 from ambient air was sampled in 2-week intervals starting in August 2010 in Göttingen. The CO_2 was extracted from about 450 L air using a Russian doll type cryogenic trap [11]. The CO_2 was dried using P_2O_5 and $Mg(ClO_4)_2$. Subsequently, the CO_2 was analyzed for its triple oxygen isotope composition using the CO_2 - CeO_2 exchange method [4]. All data on $\Delta^{17}O$ are given relative to the rocks- and minerals defined terrestrial fractionation line with a slope of 0.5251 ± 0.0007 and an intercept of $-0.014\pm0.008\%$. Each CO_2 sample was analyzed with a precision $<\pm0.04\%$. The $\Delta^{17}O$ of ambient air CO_2 is on average $-0.09\pm0.04\%$ (N=11). Our results are 0.11% higher than the prediction from Hoag et al. [3] who give $\Delta^{17}O$ of global tropospheric CO_2 of -0.20% (relative to our TFL). We reevaluated the model from Hoag et al. [3] assuming that CO_2 from the hydro- and biosphere fractionates mass-dependently according to our experimentally determined exponent β ($CO_{2(g)}$ - $H_2O_{(l)}$). The model allows us to estimate the effect of CO_2 influx from the stratosphere, biosphere and hydrosphere on the global triple oxygen isotope composition of tropospheric CO_2 . ## References - [1] Thiemens, M.H., Annu. Rev. Earth Planet. Sci., 2006. 34: p. 217-262. - [2] Farquhar, G.D., et al., Nature, 1993. 363(6428): p. 439-443. - [3] Hoag, K.J., et al., Geophys. Res. Lett., 2005. 32(L02802): p. 1-5. - [4] Hofmann, M. and A. Pack, Anal. Chem., 2010. 82: p. 4357-4361. - [5] Luz, B. and E. Barkan, Geochim. Cosmochim. Acta, 2010. 74(22): p. 6276-6286. - [6] Young, E.D., A. Galy, and H. Nagahara, Geochim. Cosmochim. Acta, 2002. 66(6): p. 1095-1104. - [7] Matsuhisa, Y., J.R. Goldsmith, and R.N. Clayton, Geochim. Cosmochim. Acta, 1978. 42: p. 173-182. - [8] Barkan, E. and B. Luz, Rapid Commun. Mass Spec., 2005. 19(24): p. 3737-3742. - [9] Brenninkmeijer, C.A.M., P. Kraft, and W.G. Mook, Isotope Geoscience, 1983. 1(2): p. 181-190. - [10] Friedman, I. and J.R. O'Neil, U.S. Geological Survey, 1977. Prof. Paper 440-KK. - [11] Brenninkmeijer, C.A.M. and T. Röckmann, Anal. Chem., 1996. **68**(17): p. 3050-3053.