

Triple oxygen isotope composition of carbon dioxide from various anthropogenic sources and in urban air

Balázs Horváth, Magdalena Hofmann, Sören Hinrichsen, and Andreas Pack
Isotopengeologie, University of Göttingen, Göttingen, Germany (bhorvat@gwdg.de)

The triple oxygen isotope composition of CO₂ from different sources is gaining in importance as possible tracer of gross carbon exchanges between major reservoirs [1]. Anthropogenic CO₂ has little influence on the $\Delta^{17}\text{O}_{TFL}$ value of CO₂ on global scale [1-3]. However, regionally it may have a significant effect. In this study, we present the oxygen isotopic signature of CO₂ with different anthropogenic provenance and we compare these values to the local atmospheric CO₂.

The CO₂ was isolated from non-condensable gases with a “Russian doll” cryogenic trap at -196 °C [4]. The $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ values of the CO₂ were determined (dual inlet - irmMS). The $\Delta^{17}\text{O}_{TFL}$ value of CO₂ was determined by equilibration with CeO₂ at 685°C, and subsequent analysis of $\delta^{17}\text{O}$ and $\delta^{18}\text{O}$ of CeO₂ by means of IR laser fluorination GC-CF-irmMS [5]. All $\Delta^{17}\text{O}$ values were reported relative to the terrestrial fractionation line, with a slope (β) of 0.5251 ± 0.0007 and an intercept (γ) of $-0.014 \pm 0.008 \text{ ‰}$. CO₂ concentration in the ambient air was determined with a GC.

CO₂ was collected from four different processes: (1) directly from high temperature combustion of fossil fuel (propane-butane and natural gas flame), (2) car exhaust, (3) combustion of wood chips, (4) human respiration.

These four processes were clearly distinguishable by the isotopic signature of CO₂. Combustion of propane-butane resulted in CO₂ with a $\Delta^{17}\text{O}_{TFL}$ value of $-0.378 \pm 0.009 \text{ ‰}$ (1σ , SE). For the CO₂ from natural gas burning a $\Delta^{17}\text{O}_{TFL}$ value of $-0.364 \pm 0.014 \text{ ‰}$ (1σ , SE) was obtained. Our data show that CO₂ from high temperature combustion inherits the signature of tropospheric O₂ ($\Delta^{17}\text{O}_{TFL} = -0.370 \text{ ‰}$ [6]). Car exhaust CO₂ had a $\Delta^{17}\text{O}_{TFL}$ value of $-0.418 \pm 0.013 \text{ ‰}$ (1σ , SE). This value was the result of high temperature combustion with a subsequent water equilibration in the exhaust line. Assuming that the CO₂ inherited oxygen isotope composition of tropospheric O₂ in the first step, the exponent β for CO₂-H₂O fractionation could be calculated to 0.521. This is in a good agreement with the exponent value of Hofmann et al. [7]. Burning of wood chips produced CO₂ with a $\Delta^{17}\text{O}_{TFL}$ value of $-0.261 \pm 0.010 \text{ ‰}$ (1σ , SE). Kinetic fractionation of O₂ could be responsible for this value. The $\Delta^{17}\text{O}_{TFL}$ value of respiration CO₂ was $-0.109 \pm 0.027 \text{ ‰}$ (1σ , SE). This value is due to the equilibration of CO₂ with body water, with a $\Delta^{17}\text{O}_{TFL} = 0.00$ ($\beta_{CO_2-H_2O} = 0.522$ [7]).

Eleven atmospheric CO₂ samples were collected in the campus of the University of Göttingen (NW Germany), throughout the last year. The $\Delta^{17}\text{O}_{TFL}$ values were between $-0.150 \pm 0.04 \text{ ‰}$ and $-0.037 \pm 0.04 \text{ ‰}$ with a mean of $-0.087 \pm 0.013 \text{ ‰}$ (1σ , SE). Concentration of the CO₂ varied between 375 ± 5 and 450 ± 5 ppm. There was no correlation between CO₂ $\Delta^{17}\text{O}_{TFL}$ values and concentration. Assuming that enhanced CO₂ concentration was originated from anthropogenic sources, a shift of approx. 0.05‰ in the $\Delta^{17}\text{O}_{TFL}$ value should have been obtained. Further measurements should clarify, if the lack of correlation was the result of the measurements uncertainty, or CO₂ equilibration with different water reservoirs overwrites mixing effect even on the regional scale.

- [1] Hoag, K.J., et al., Geophys. Res. Lett., 2005. **32**(L02802): p. 1-5.
- [2] Hofmann, M., B. Horváth, and A. Pack, ISI 2010.
- [3] Horváth, B., M. Hofmann, and A. Pack, in EGU. 2010.
- [4] Brenninkmeijer, C.A.M. and T. Röckmann, Anal. Chem., 1996. **68**(17): p. 3050-3053.
- [5] Hofmann, M. and A. Pack, Anal. Chem., 2010. **82**(11): p. 4357-4361.
- [6] Luz, B. and E. Barkan, Geochim. Cosmochim. Acta, 2005. **69**(5): p. 1099-1110.
- [7] Hofmann, M., B. Horváth, and A. Pack. in EGU. 2011.