



## **The Impact of CO<sub>2</sub>-SO<sub>2</sub> – Brine – Reservoir Rock Interactions on Petrophysical Properties.**

Juliane Kummerow, Erik Spangenberg, and Ronny Giese

GFZ German Research Centre for Geosciences, 4.1 Reservoir Technologies, Potsdam, Germany (jule@gfz-potsdam.de)

In this study we evaluate the impact of impure CO<sub>2</sub> on possible CO<sub>2</sub> repositories (Buntsandstein, Stuttgart Formation). We present experimental petrophysical data of the simulated injection of pure CO<sub>2</sub> and CO<sub>2</sub> and co-contaminant SO<sub>2</sub> into saline aquifers under realistic pressure and temperature conditions. We investigate 6 sandstones from different German localities, representing lower and upper Triassic and lower Cretaceous sedimentary basin formations. Our long-term experimental flow assembly is designed for a maximum pressure of 600 bar at a maximum working temperature of 150°C. The internal set-ups allow for the determination of P and S wave velocities, electrical conductivity and permeability of samples of 30 mm in diameter and 60 mm in length. Long-term (several weeks) exposure experiments with pure CO<sub>2</sub> reveal no significant changes in the petrophysical properties (electrical resistivity, elastic wave velocity, permeability). In contrast, for the injection of CO<sub>2</sub> and co-contaminant SO<sub>2</sub> (1 vol-%) we have observed significant and irreversible changes of all monitored physical parameters.