

Spatial and temporal variability in summer snow pack in Dronning Maud Land, Antarctica

Timo Vihma (1), Olli-Pekka Mattila (2), Roberta Pirazzini (1), and Milla Johansson (1)

(1) Finnish Meteorological Institute, Helsinki, Finland (timo.vihma@fmi.fi), (2) University of Helsinki, Finland. Presently in the Finnish Environmental Institute

To quantify the spatial and temporal variability in the snow pack, snow temperature, density, and layering were measured in four summers in the Dronning Maud Land, Antarctica. Data from a 310-km-long transect showed that horizontal gradients in snow density, temperature, and hardness were largest in the escarpment region, and the most homogeneous snow pack was found on the Riiser-Larsen Ice Shelf. On the local scale, day-to-day temporal variability dominated the standard deviation of snow temperature, while the diurnal cycle was next important, and horizontal variability on the scale of 0.4 to 10 m was the smallest component. The day-to-day and total small-scale variability decreased exponentially with depth with an e-folding depth at 0.25 to 0.30 m. In the uppermost 0.2 m, the snow temperature correlated with the air temperature history over the last 6-12 h, whereas at the depth of 0.3 to 0.5 m, the most important time scale was 3 days. Snow temperature depended on the cloud cover in the uppermost 0.30 m and snow density in the uppermost 0.10 m. Both on the intra-pit and transect scales, the ratio of horizontal to temporal variability increased with depth. On the intra-pit scale the temporal variability in snow density exceeded the horizontal variability throughout the uppermost 0.50 m layer, but on the 100-km scale only in the uppermost centimetres. The horizontal standard deviation of snow density increased rapidly between the scales of 0.4 and 2 m, and much more gradually from 10 to 100 m.