

Coastal and Oceanic SST variability along the western Iberian Peninsula.

Fran Santos, Moncho Gómez-Gesteira, Maite deCastro, and Isabel Iglesias
Universidade de Vigo, Ephyslab, Ourense, Spain (fsantos@uvigo.es)

The inter-annual variability of the sea surface temperature (SST) was analyzed along the western Iberian Peninsula in a region ranging from 9.5°W to 22.5°W and from 42.5°N to 37.5°N with a spatial resolution of 1°×1° from 1900 to 2008. Both coastal and oceanic SST showed an overall increase with warming and cooling cycles similar to those observed in the North Atlantic region (IPCC, 2007) and in previous regional studies: García-Soto et al. (2002) in the area close to the Celtic shelf and deCastro et al., (2009) in the Bay of Biscay. The difference between ocean and coastal SST (Δ SST) was not constant all over the study period. In general, Δ SST tends to increase during the warming periods and to decrease during the cooling periods. Ocean water is more affected by the different warming-cooling cycles than coastal water; this different warming rate could be explained in terms of local and remote forcing factors. According to previous research, the temperature gradient between coast and ocean is mainly due to coastal upwelling in spring- summer (Santos et al. 2005; Álvarez et al. 2008a) and to the water cooling developed in shallow waters at the end of autumn due to net heat loss from surface (Fiúza, 1983; Deschamps et al. 1984). In addition, the Thermohaline Circulation (THC) highly influences SST features in the North Atlantic region carrying warm water from the tropics to northern latitudes. There is a link between the THC variability and the AMO index (Ganachaud and Wunsch, 2000). The AMO index characterizes the large-scale pattern of multidecadal variability of SST calculated as the SST anomaly averaged for the North Atlantic region. Macroscopically, the ocean and coastal SST follow the cycles observed at the whole North Atlantic region (expressed in terms of the AMO index). Nevertheless, the correlation between AMO and SST is observed to decrease coastward. Actually, the inter-annual variability of coastal SST water is best described in terms of both THC and coastal upwelling.

Álvarez, I., Gómez-Gesteira, M., deCastro, M., and Dias, J.M., 2008a. Spatiotemporal evolution of upwelling regime along the western coast of the Iberian Peninsula. *Journal of Geophysical Research* 113, C07020, doi:10.1029/2008JC004744

deCastro, M., Gómez-Gesteira, M., Alvarez, I., Gesteira, J.L.G., 2009. Present warming within the context of cooling-warming cycles observed since 1854 in the Bay of Biscay. *Cont. Shelf Res.* 29, 1053–1059.

desChamps, P.Y., Frouin, R., Crepon, M., 1984. Sea surface temperatures of the coastal ones of France observed by the HCMM satellite. *J. Geophys. Res.* 89, 8123– 8149

Fiúza, A.F.G., 1983. Upwelling patterns off Portugal. In *Coastal Upwelling. Its Sediment Records (Part A)*, edited by Suess, E., Thiede, J., Plenum, New York, 85–98.

Ganachaud, A., Wunsch, C., 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. *Nature* 408, 453– 457.

García-Soto, C., Pingree, R.D., Valdés, L., 2002. Navidad Development in the Southern Bay of Biscay: Climate change and Swoddy structure from remote sensing and in situ measurements. *Journal of Geophysical Research* 107, C8 3118, doi:10.1029/2001JC001012.

Intergovernmental Panel on Climate Change. 2007. *Climate Change 2007: the physical science basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental panel on Climate Change*, Cambridge University Press, Cambridge, UK.

Santos, A.M.P., Kazmin, A.S., Peliz, A., 2005. Decadal changes in the Canary upwelling system as revealed by satellite observations: Their impact on productivity. *J. Mar. Res.* 63, 359–379.