

Denitrification kinetics support high nitrous oxide emissions in West Siberian cryoturbated tundra

Hanna Silvennoinen (1), Annelene Pengerud (1), Christina Biasi (2), and Peter Dörsch (1)

(1) Norwegian University of Life Sciences, Dept. of Plant and Environmental Sciences, (2) University of Eastern Finland, Kuopio Campus, Dept. of Environmental Sciences

High N₂O emissions have been reported from West Siberian cryoturbated tundra soil, so called peat circles (Repo et al. 2009). However, the processes behind the high N₂O emissions are not known. We studied denitrification kinetics, N₂O production rates and carbon mineralization in soil from both the cryoturbated peat circle without vegetation and the surrounding non-turbated peat with vegetation (0-5 and 15-20 cm depth, 3 field replicates each). Peat circle soil was visually more decomposed, had higher nitrate contents but similar low pH (3.1) as compared with non-turbated peat.

When incubated anaerobically as loose soil, the cryoturbated peat produced much higher amounts of N₂O than the non-turbated peat. In addition, the N₂O product ratio for denitrification (as inferred from incubation with and without 10 vol% acetylene) was much higher in cryoturbated than in non-turbated peat, suggesting that instantaneous nitrous oxide reductase (N₂OR) activity in cryoturbated soil is absent or low. Significant N₂ production in cryo-turbated soil occurred only after all nitrate was consumed, illustrating that the peat circle denitrifier community can express N₂OR. Albeit at much lower rates, the non-turbated soils showed a more balanced denitrification upon oxic-anoxic transition characterized by instantaneous N₂ production with little N₂O accumulation. Unbalanced denitrification in peat circle soil was also indicated by μ molar NO accumulation whereas no measurable NO production was found in the non-turbated soil. Contrasts in denitrification performance persisted when incubating the soils as anoxic soil slurries and adding nitrate and glucose to the non-turbated soil to equalize substrate concentrations. Together, our findings suggest that the active denitrifying communities in the two soils represent distinct denitrification phenotypes; active denitrifiers in the N-abundant cryoturbated soil appear to be more sloppy in regulating electron flow resulting in higher N loss in form of NO and N₂O. The non-turbated denitrifying community, in contrast, tightly regulates electron flow to N-oxides, which probably reflects the scarcity of N-oxides in tundra soil. Molecular studies are on its way to clarify taxonomic denitrifier composition in cryoturbated and non-turbated tundra soil (Palmer, K. et al.).

To test the hypothesis that higher denitrification rates in cryoturbated peat are due to accelerated in situ mineralization, we also studied CO₂ production in a long-term incubation experiment with fresh loose soil (90d, 15 °C). The cryoturbated soil exhibited much lower C mineralization rates than the top soil of the non-turbated tundra, most probably reflecting the absence of fresh organic carbon in this vegetation-free soil. Nevertheless, the low CO₂ production in the peat circles is in contrast to the high denitrification rates and illustrates a decoupling of C and N cycling in long-term turbated arctic soil. Apparently, the gradual decline of the C/N ratio in cryo-turbated soil (Repo et al. 2009) has fostered a viable denitrifier community through increasing net release of mineral nitrogen. Carbon limitation together with abundant N-oxide availability, in turn, may be one reason for the observed low instantaneous N₂O reductase activity in the peat circle soil.

References: Repo M, Susiluoto S, Lind SE, Jokinen S, Elsakov V, Biasi C, Virtanen T, Martikainen PJ. 2009. Large N₂O emissions from cryoturbated peat soil in tundra. *Nature Geoscience* 2: 189-192.