

Melt-induced speed-up of Greenland ice-sheet offset by efficient subglacial drainage

Aud Sundal (1), Andrew Shepherd (1), Peter Nienow (2), Edward Hanna (3), Steven Palmer (1), and Philippe Huybrechts (4)

(1) School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom, (2) School of Geosciences, University of Edinburgh, Edinburgh EH8 9XP, United Kingdom, (3) Department of Geography, University of Sheffield, Sheffield S10 2TN, United Kingdom, (4) Departement Geografie, Vrije Universiteit Brussel, B-1050 Brussels, Belgium

Fluctuations in surface melting are known to affect the speed of glaciers and ice sheets^{1–4}, but their impact on the Greenland Ice Sheet in a warming climate remains uncertain. While some studies suggest that greater melting produces greater ice sheet acceleration^{4–5}, others have identified a long-term decrease in Greenland's flow despite increased melting². Here, we use satellite observations of ice motion recorded in a land-terminating sector of southwest Greenland to investigate the manner in which ice flow develops during years of markedly different melting. Although peak rates of ice speedup are positively correlated with the degree of melting, mean summer flow rates are not because glacier slowdown occurs, on average, when a critical runoff threshold of about 1.4 cm/day is exceeded. In contrast to the first half of summer, when flow is similar in all years, speedup during the latter half is 62 ± 16 per cent less in warmer years. Consequently, in warmer years, the period of fast ice flow is three times shorter, and, overall, summer ice flow is slower. This behaviour is at odds with that expected due to basal lubrication alone. Instead, it mirrors that of mountain glaciers^{6–7}, where melt-induced acceleration of flow is reduced once subglacial drainage becomes efficient. A model of ice sheet flow that captures switching between cavity and channel drainage modes⁸ is consistent with the runoff threshold, fast-flow periods, and later-summer speeds we have observed. Simulations of the Greenland Ice Sheet flow under climate warming scenarios should account for dynamic evolution of subglacial drainage; a simple model of basal lubrication alone misses key aspects of the ice sheet response to climate warming.

References

1. Joughin, I. et al. Seasonal speedup along the western flank of the Greenland Ice Sheet. *Science* 320, 781-783 (2008).
2. van de Wal, R.S.W. et al. Large and rapid melt-induced velocity changes in the ablation zone of the Greenland Ice Sheet. *Science* 321, 111-113 (2008).
3. Bartholomew, I. et al. Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. *Nature Geoscience* 3, 408-411 (2010).
4. Zwally, H.J. et al. Surface melt-induced acceleration of Greenland ice-sheet flow. *Science* 297, 218-222 (2002).
5. Parizek, B.R. and Alley, R.B. Implications of increased Greenland surface melt under global-warming scenarios: Ice-sheet simulations. *Quaternary Science Reviews* 23, 1013-1027 (2004).
6. Bingham, R.G., et al. Intra-annual and intra-seasonal flow dynamics of a High Arctic polythermal valley glacier. *Annals of Glaciology*, Vol 37 37, 181-188 (2003).
7. Truffer, M., et al. Record negative glacier balances and low velocities during the 2004 heatwave in Alaska, USA: implications for the interpretation of observations by Zwally and others in Greenland. *J. Glaciol.* 51, 663-664 (2005).
8. Schoof, C. Ice-sheet acceleration driven by melt supply variability. *Nature* 468, 803 -806 (2010).