

Structural Analysis of Titan's Tholins by Very-High Resolution Mass Spectrometry

Odile Dutuit (1), Véronique Vuitton (1), Roland Thissen (1), Arpad Somogyi (1), and Mark A. Smith (1)

(1) Institut de Planétologie et d'Astrophysique de Grenoble, CNRS-UJF, Grenoble, France

(odile.dutuit@obs.ujf-grenoble.fr/+33 476415146), (2) Department of Chemistry and Biochemistry, University of Arizona, Tucson AZ, USA, (3) Lunar and Planetary Laboratory, University of Arizona, Tucson AZ, USA

The structure, composition and formation processes of the aerosols constituting Titan's haze are largely unknown. As a consequence, analogs (called tholins) produced in laboratories have been extensively studied with various analytical methods (IR, UV and Raman spectroscopy, NMR, pyrolysis-GC/MS, etc.) and appear to be hydrogenated carbon nitriles with a very complex structure [1,4].

While the techniques mentioned above provide some information on the bulk composition, very-high resolution mass spectrometry (HRMS) with accurate mass measurements is necessary to determine the elemental composition of each individual molecule making up the samples. Moreover, tandem mass spectrometry (MS/MS) experiments can provide complementary information on the functional group inventory in tholins [2]. Based on previous work performed in the positive ionization mode, we propose here a systematic very-high resolution tandem mass spectrometry analysis (HR-MS/MS) of tholins in the negative ionization mode.

Our tholin sample is synthesized at the University of Arizona in a ultra-high vacuum (UHV) reactor by exposing a N₂ / CH₄ (95% / 5%) gas mixture kept at 195 K to an AC electrical discharge. The tholins soluble fraction is analyzed with two Fourier Transform mass spectrometers: a LTQ-Orbitrap in Grenoble and a 9.4 T FT-ICR in Tucson. The sample is introduced in both mass spectrometers with an Electrospray Ionization (ESI) source. Selected ions are submitted to two low-energy collision induced dissociation (CID) methods: collision activated dissociation with He (CAD) in the Orbitrap and Sustained Off Resonance Irradiation CID (SORI-CID) in the FT-ICR. Infrared multiphoton dissociation (IRMPD) MS/MS experiments were also carried out on the FT-ICR instrument.

Spectra obtained in the negative ionization mode are much simpler than the spectra obtained in the positive one. Below m/z 400, they are typically constituted of one or two peaks at each nominal m/z while the positive mode spectra can present up to five or six peaks at each m/z. This is easily understandable as many of the molecules identified as positive ions cannot be easily deprotonated and, as a consequence, do not appear in the negative mode spectra. However, negative mode data reveal highly unsaturated (H poor) molecules with large N content (C/N ≈ 1.0) that were not previously observed in the positive ionization mode. This shows the importance of studying tholins ionized in both polarities in order to have a more representative picture of the classes of molecules present in those samples.

HR MS/MS of complex mixtures are extremely difficult to disentangle because of intricate parent/fragment combinations [3]. However, the relative simplicity of the negative mode data allows a more straightforward analysis of the HR MS/MS data. They confirmed the role of the C₂N₃⁻ anion as a major building block of tholins [4] from which several families of ions can be identified. Iterative HR MS/MS on members of a given family allows retrieving likely structures for those ions.

In the context of a return to Titan, development of very-high resolution ($m/\Delta m > 105$) mass spectrometers for spaceflight capable of in situ sampling of the atmosphere is mandatory, i.e. adding the ability to analyze both positive and negative ions would be very beneficial.

References: [1] Quirico E. et al. (2008) Icarus, 198, 218-231. [2] Somogyi A. et al. (2005) J. Am. Soc. Mass Spectrom., 16, 850-859. [3] Vuitton V. et al. (2010) Faraday Discuss., 147, 495-508. [4] Carrasco N. et al. (2009) J. Phys. Chem. A, 113, 11195-11203.