



## Applications of GPR to road pavement: an overview

Andrea Benedetto

University ROMA TRE, Sciences of Civil Engineering, Rome, Italy (benedet@uniroma3.it, 0039.06.57333441)

Ground Penetrating Radar (GPR) has been using in the pavement engineering since almost twenty years. The traditional and mostly diffused application is the evaluation of the thicknesses of pavement layers. Such a measure can be done at traffic velocity unless disturbing safety and operability of the roads. Standards have been developed for this application (e.g. ASTM, 1999). The principles of using GPR reflections to compute layer properties have been determined by Maser and Scullion (1991).

In particular, by monitoring time delays between the peaks of the reflected signals, it is possible to evaluate layer thicknesses. Radar resolution depends on the wave length of the signal. If  $f$  is the frequency [GHz] and  $v$  the propagation velocity [mm/ns] of the signal, the wave length [ $\mu$ m] is  $v/f$  [mm]. The propagation velocity depends on the dielectric characteristics of a low-loss materials as it follows:  $v = c / \epsilon_0 \mu_0$  where  $\epsilon_0$  is the dielectric permittivity and  $c$  the free space velocity of an electromagnetic wave (3x10<sup>8</sup> m/s). In dry asphalt  $\epsilon_0$  is 2 to 4, in wet asphalt  $\epsilon_0$  is 6 to 12 and  $v$  is 70 to 210 mm/ns. The theoretical resolutions of GPR are from about 90 mm, for a center frequency between 0.8 and 2.3 GHz, to 25 mm for  $f = 2.6$  to 7.7 GHz.

At the state of the art two questions affect the evaluation of the thin layers: (1) the resolution of GPR, that is often comparable with the thickness and (2.1) the signal's analogical characteristics as (2.2) the signal's processing procedures to reduce the noise from antenna's "end reflection" (Delbò and alii, 2000; Benedetto and alii, 2004).

More recently GPR has been used to evaluate the pavement conditions. In the paper we present the methods (1) based on the electronic detection of pavement singularities as the ones (2) for moisture and bulk densities evaluation. Referring the first point, it is possible to identify three different categories of road damages (Benedetto and alii, 2004): point located singularity inside a homogeneous layer (i.e. void or water), long wave length singularity between two different layers (i.e. depressions), short wave length singularity between two different layers (i.e. pumping).

In addition, referring the second point, many authors measure the moisture content using GPR (for a review see Grote et alii, 2005; Benedetto and Pensa, 2007).

The relationship between the dielectric constant of a soil and its volumetric water content has been extensively studied in the past. Various empirical correlations have been proposed, like the commonly used theory suggested by Topp, which is supposedly valid for any type of soil (Topp, et al., 1980). Reviews of the various theoretical models are available (Friedman, 1998; Grote et al., 2002, 2003; Hubbard et al., 2002; Huisman et al., 2003; Robinson et al., 2003; Serbin and Or, 2003). Another theoretical approach uses the volume fractions and the dielectric permittivity of each soil constituent to derive an approximate correlation, using a self-consistent approximation that represents the medium with the multi-indicator mode (Fiori et al., 2005).

In some cases, the dielectric permittivity is estimated from the amplitudes of the transmitted and reflected signals (e.g. Al-Qadi et al., 2004).

A more efficient and self-consistent approach is based on the GPR processing in the frequency domain. Werts et al. (2001) observed that the dielectric permittivity is influenced by the frequency. Lambot et al. (2004; 2006) considered the dependence of the imaginary part of the dielectric permittivity from the frequency to investigate the subsurface electric characteristics. Relating to the water content estimation, they found very consistent results. Oden et al. (2008) have calibrated and validated a new model for measuring the electrical properties of soil. The algorithm estimates the shallow soil properties using the early-time arrivals, i.e. the arrivals recorded before subsurface reflections arrive (Pettinelli et al., 2007).

Finally a full signal processing in the frequency domain has been proposed very recently, basing on the theory of Rayleigh Scattering, for water content prediction in porous media (Benedetto, 2010).

Recently some researchers have also tested GPR for the analysis of the characteristics of bituminous materials (e.g. Aultman-Hall and alii, 2004; Liu and Guo, 2002; Benedetto et alii, 2006; Chazelas et alii, 2007). The investigated methods are generally based on empirical multi variables correlations among parameters, consequently they cannot be considered valid at a general level. The main parameters that have been investigated are: nature of aggregates, bitumen content, voids, compaction, maximum size of aggregate, continuity of the grading.

The new perspective in pavement management of using GPR for efficient, safe and effective diagnosis of damage has been firstly investigated at a methodological level (Benedetto and Angiò, 2002). More recently some very interesting contributions that demonstrate that this approach can be really effective appeared (Diamanti and alii, 2010). However the available experiences are actually sporadic and some additional research efforts are absolutely needed (Papi, 2010).

#### Main references

1. Al-Qadi, I.L., Lahouar, S., Loulizi, A., Elseifi, M.A., Wilkes, J.A., 2004. Effective approach to improve pavement drainage layers. *J. Transp. Eng.*, 130 (5), 658–664.
2. ASTM [99] AMERICAN SOCIETY FOR TESTING AND MATERIALS, Standard test method for determining thickness of bound pavement layers using short-pulse radar, 1999 Annual Book of ASTM Standards, D 4748-98, p. 470-473
3. Benedetto, A., Angiò, C. (2002), Road safety and pavement management: new perspectives and advanced technologies. (2002). *Process in Safety Science and Technology Part A*, 3, 687-696
4. Benedetto, A., 2004. Theoretical approach to electromagnetic monitoring of road pavement. *Proc. 10th Int. Conference on Ground Penetrating Radar*. Delft. The Netherlands.
5. Benedetto, A., Benedetto, F., De Blasiis, M.R., Giunta, G., 2004. Reliability of radar inspection for detection of pavement damages. *International Journal of Road Material and Pavement Design*, Hermes Science 5 (1), 93–110.
6. Benedetto A., M.R. De Blasiis, M. Crispino, S. Pensa (2006). Analysis of hot-mix asphalt properties: a full scale experiment, *International Conference on Ground Penetrating Radar*, June 19-22, 2006, Columbus Ohio, USA
7. Benedetto, S. Pensa (2006). Indirect diagnosis of pavement structural damages using surface GPR reflection techniques, *Journal of Applied Geophysics*, doi:10.1016/j.jappgeo.2006.09.001 Elsevier
8. Benedetto A. (2010) Water content evaluation in unsaturated soil using GPR signal analysis in the frequency domain, *Journal of Applied Geophysics*, 71, 26–35
9. Chazelas A. J.L., B. X. Derobert G. P. Queffelec, C. M. Adous, D. G. Villain LEST, E. V. Baltazart, F. L. Laguerre, G. P. Queffelec (2007). EM characterization of bituminous concretes using a quadratic experimental design, *4th International Workshop on Advanced Ground Penetrating Radar*, 27-29 June 2007, 278 - 283
10. Diamanti N., Redman D., Giannopoulos A. (2010). A Study of GPR Vertical Crack Responses in Pavement Using Field Data and Numerical Modelling, *Proceedings of the XIII International Conference on Ground Penetrating Radar*, Lecce (Italy), 21-25 June 2010
11. Fiori, A., Benedetto, A., Romanelli, M., 2005. Application of the effective medium approximation for determining water contents through GPR in coarse-grained soil materials. *Geophysical Research Letters* 32, L09404. doi:10.1029/2005GL022555.
12. Friedman, S.P., 1998. A saturation degree-dependent composite spheres model for describing the effective dielectric constant of unsaturated porous media. *Water Resources Research* 34, 2949–2961.
13. Grote, K., Hubbard, S., Rubin, Y., 2002. GPR monitoring of volumetric water content in soils applied to highway construction and maintenance. *Leading Edge Exploration* 21 (5), 482–485.
14. Grote, K., Hubbard, S., Rubin, Y., 2003. Field-scale estimation of volumetric water content using GPR groundwave techniques. *Water Resources Research* 39 (11), 1321.
15. Grote K., S. Hubbard, J. Harvey, Y. Rubin 2005. Evaluation of infiltration in layered pavements using surface GPR reflection techniques, *Journal of Applied Geophysics*, 57, 129– 153
16. Hubbard, S., Grote, K., Rubin, Y., 2002. Estimation of nearsubsurface water content using high frequency GPR ground wave. *Leading Edge of Exploration Society of Exploration Geophysics* 21 (6), 552–559.
17. Huisman, J.A., Hubbard, S.S., Redman, J.D., Annan, A.P., 2003. Measuring soil water content with ground penetrating radar: a review. *Vadose Zone Journal* 2, 476–491.
18. Lambot, S., Slob, E.C., van den Bosch, I., Stockbroeckx, B., Vanclooster, M., 2004. Modeling of ground-penetrating radar for accurate characterization of subsurface electric properties. *IEEE Transactions on Geoscience and Remote Sensing* 42, 2555–2568.
19. Lambot, S., Weihermüller, L., Huisman, J.A., Vereecken, H., Vanclooster, M., Slob, E.C., 2006. Analysis of air-launched ground-penetrating radar techniques to measure the soil surface water content. *Water Resources Research* 42, W11403. doi:10.1029/2006WR005097.
20. Lau, C.L., Scullion T., Chan P., (1992). Modeling of Ground-Penetrating Radar wave propagation in pavement systems, *Transport. Research Record*, n°.1355, 99-107
21. Oden, C.P., Olhoeft, G.R., Wright, D.L., Powers, M.H., 2008. Measuring the electrical properties of soil using a calibrated ground-coupled GPR System. *Vadose Zone Journal* 7 (1), 171–183.
22. Papi, A. (2010) Simulazione di un sistema GPR per applicazioni stradali: un nuovo catalogo dei degradi. Awarded Master Thesis, University Roma Tre, Rome, Italy

23. Pettinelli, E., Vannaroni, G., Di Pasquo, B., Mattei, E., DiMatteo, A., De Santis, A., Annan, P.A., 2007. Correlation between near-surface electromagnetic soil parameters and earlytime GPR signals: an experimental study. *Geophysics* 72 (2), A25–A28.
24. Rainwater, N.R., Zuo, G., Drumm, E.C., Wright, W.C., Yoder, R.E., 2001. In situ measurement and empirical modelling of base infiltration in highway pavement systems. *Transp. Res. Rec.*, 1772, 143–150.
25. Robinson, D.A., Jones, S.B., Wraith, J.M., Or, D., Friedman, S.P., 2003. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. *Vadose Zone J.*, 2, 444–475.
26. Saarenketo, T., Scullion, T. (2000). Road evaluation with ground penetrating radar, *Journal of Applied Geophysics*, 43, 119–138
27. Scullion, T., Lau, C.L., Chen, Y., (1994). Pavement evaluations using ground penetrating radar, Proc of the V th International Conference on Ground Penetrating Radar, Kitchener, Ontario, Canada, 449–463
28. Serbin, G., Or, D., 2003. Near-surface soil water content measurements using horn antenna radar: methodology and overview. *Vadose Zone Journal* 2, 500–510.
29. Topp, G.C., Davis, J.L., Annan, A.P., 1980. Electromagnetic determination of soil water content: measurements in coaxial transmission lines. *Water Resources Research* 16 (3), 574–582.
30. Werts, A.H., Huisman, A., Bouten, W., 2001. Information content of time domain reflectometry waveforms. *Water Resources Research* 37 (5), 1291–1299.
31. Zuo, G., Drumm, E.C., Meier, R.W., Rainwater, N.R., Marshall, C., Wright, W.C., 2004. Observed long-term water content changes in flexible pavements in a moderate climate. *Proceedings of Geo- Trans Geotechnical Engineering for Transportation Projects*, Los Angeles, California, vol. 1 (126). 10 pp.