

Numerical-analytical studies of CO₂ leakage through fault with retardation due to matrix diffusion

Nawaz Ahmad and Anders Wörman

Department of Land and Water Resources Engineering, Royal Institute of Technology, Stockholm, Sweden (nawaza@kth.se, +46-(0)8-790 6857)

One of the concerns related to CO₂ underground storage is the possibility of CO₂ leakage from the injection formation. Leakage results due to CO₂ being mobile, positively buoyant with respect to resident brine and large-scale groundwater motion. This study presents results of numerical-analytical simulations of CO₂ leakage through fault(s) with retardation due to matrix diffusion as well as permanent removal caused by mineralization. Buoyancy drives the mobility of CO₂ and causes it to migrate to the top of the injection zone and subsequent upwards leakage after encountering the weaker zones. Rock matrix diffusion significantly slows down the mobility of CO₂ and implies that significantly larger mineral surfaces are available for mineralization of CO₂.