

Estimating incision rates in small bedrock channels using in situ cosmogenic ^{10}Be : Assessing channel adjustment to landscape transience driven by base-level fall

Miguel Castillo (1), Paul Bishop (1), Derek Fabel (1), John Jansen (1,2)

(1) School of Geographical & Earth Sciences. University of Glasgow, United Kingdom (Miguel.Castillo@ges.gla.ac.uk), (2) Department of Physical Geography and Quaternary Geology. Stockholm University, Sweden

Knickpoints triggered by base-level fall are key transient features in the bedrock rivers of a landscape that is adjusting to the base-level fall. Whether the reach downstream of a knickpoint re-establishes its former profile and incision rate after the passage of a knickpoint, as the power law rule predicts, has not been fully assessed, especially for the case of small bedrock rivers. Here we use the concentrations of ^{10}Be in the actively eroding riverbed in two small bedrock rivers to estimate incision rates upstream and downstream of a base-level fall knickpoint. We used the Isle of Jura (western Scotland) as a natural laboratory for this study because Jura rivers are incising into a homogeneous quartzite unit in response to the base-level fall generated by a glacio-isostatic rebound. The rock uplift in response to this rebound is confirmed by c.13.6 ka beaches now c.35 m above sea level. The ^{10}Be data indicate that bedrock channel incision rates are higher downstream of the knickpoints, reflecting both an incomplete accommodation of the base-level fall by knickpoint retreat and ongoing glacio-isostatic uplift.