

HO_x recycling via HO₂ + isoprene-derived RO₂: Direct experimental evidence

Christoph B. M. Groß, Terry J. Dillon, and John N. Crowley

Max Planck Institut für Chemie, J.-J.-Becher-Weg 27, 55128 Mainz, Germany (christoph.gross@mpic.de)

Recent results from field, lab and theoretical work suggest that the atmospheric oxidation of isoprene and other important NMHCs is still inadequately represented in atmospheric models. In low NO_x conditions organic peroxy radicals (RO₂) – the key intermediates in these processes – react mainly with HO₂. Depending on the substitution pattern of the RO₂ these reactions either terminate or propagate radical chemistry. The propagating reaction channels recycle HO_x by direct production of OH and thus contribute to the maintenance of the atmosphere's oxidative capacity.

In this work for the first time OH yields for reactions of HO₂ with RO₂ formed during isoprene oxidation were measured directly. We deployed a laser-based experiment with multidiagnostic spectroscopic tools including direct detection of OH, HO₂ and RO₂ as well as on-line determination of precursor concentrations. Branching ratios were derived by numerical simulations of the photochemical systems. For the reactions of HO₂ with CH₃C(O)O₂ and HOCH₂C(O)O₂ substantial OH yields were determined.