

Ozone Loss within the 2010 Arctic Vortex derived from in situ observations with the Geophysica

Elisabeth Hösen (1), C. Michael Volk (1), Johannes Wintel (1), Marcel vom Scheidt (1), Alexey Ulanovsky (2), Fabrizio Ravagnani (3), Jens-Uwe Groß (4), and Kaley Walker (5)

(1) Bergische Universität Wuppertal, Germany (e.hoesen@uni-wuppertal.de), (2) Central Aerological Observatory, Dolgoprudny, Russia, (3) ISAC-CNR, Bologna, Italy, (4) Forschungszentrum Jülich, Germany, (5) University of Toronto, Canada

We quantify chemical ozone loss in the Arctic vortex up to mid March 2010 by analysing the evolution of the O₃-N₂O relation during the RECONCILE Campaign. Ozone was measured on board the Geophysica by the Fast Ozone Analyser (FOZAN). N₂O and CO₂, along with CFC-11, CFC-12, H-1211, CH₄, SF₆, and H₂, were simultaneously measured by the High Altitude Gas Analyzer (HAGAR) during 13 Geophysica flights. An O₃ versus tracer reference before substantial ozone loss occurred is provided by the satellite experiment ACE-FTS.

As the majority of the flights encountered both air within and outside the vortex, the observed N₂O mixing ratio as a function of potential temperature is first used to identify true vortex air for each flight. Subsequently, cumulative ozone loss is derived from the O₃-N₂O relation as a function of the respective tracer and finally potential temperature. We find significant ozone loss of about 0.5 ppm above 430 K in early February. Comparisons will be made with numerical simulations by the Chemical Lagrangian Model of the Stratosphere (CLaMS).