

A Geomorphological Interpretation of the Power Law Relations Connected with Recession Curves

Basudev Biswal and Marco Marani

Department of IMAGE and International Center for Hydrology, University of Padova, Italy. Email: basudev01@gmail.com

By assuming that in the recession phase the flow rate, q , per unit length of the network and the rate, c , at which the length of the drainage network decreases because of its progressive desaturation, are constant in space and time, it has been argued that the exponent α in the power law $-dQ/dt = kQ^\alpha$ (where Q is the discharge at the outlet at time t) comes from the geomorphologic power law relationship $N(l) \propto G(l)^\alpha$, where $N(l)$ is the number of channel links located at a distance l from their respective channel heads, $G(l)$ is the total length of the channel links in the network located at a distance greater than or equal to l from the channel heads. The parameter k varies from one event to another, implying that there is no unique relationship between discharge and volume of water stored within the basin. We show here that k depends on the hydrograph peak discharge (Q_p) according to a power law: $k \propto Q_p^{-\gamma}$, and the power law exponent γ is found to be linearly related to α . This implies that $-dQ/dt$ vs. Q curves of a basin can collapse into a single curve, say Q^* .

Introducing $n(l) = N(l)/A$ and $g(l) = G(l)/A$, we show that $n(l)$ vs. $g(l)$ plots for different basins collapse onto a single curve. This finding supports the hypothesis made earlier by Shreve that link magnitude or number of first order channels of a basin is linearly related with its area. Also, we find that a similar collapse can be obtained for recession hydrographs of different basins once the specific discharge $u = Q^*/A$ is defined. Our findings provide a rather general observational and theoretical framework to interpret recession curves and their relation with basin morphology.