

A new ion rate dependent parameterization for HNO₃ buildup on water cluster ions

Stefan Versick (1,2), Thomas Reddmann (1), Gabriele Stiller (1), and Bernd Funke (3)

(1) Institut für Meteorologie und Klimaforschung, Karlsruher Institut für Technologie, Germany, (2) Steinbuch Centre for Computing, Karlsruher Institut für Technologie, Germany, (3) Instituto de Astrofísica de Andalucía, CSIC, Granada, Spain

Nitric Acid (HNO₃) is one of the most important members of the odd nitrogen family NO_y and plays a major role in the formation of polar stratospheric clouds which are the key ingredient for the building of the ozone hole. Good knowledge of sources and sinks of HNO₃ is therefore essential for the understanding of stratospheric ozone chemistry. MIPAS satellite observations during the last years have shown that polar winter NO_y enhancements related to NO_x intrusions of mesospheric origin can cause buildup of additional HNO₃.

One of the main sources - in particular in the middle to upper winter stratosphere - is HNO₃ formation on water cluster ions and heterogenous reactions on sulfate aerosols (Böhringer et al. ,1983, de Zafra et al., 2001) transforming N₂O₅ into HNO₃. The parameterization by de Zafra et al. (2001) assumed constant water cluster ions profiles. In our CTM KASIMA we introduced a dependence of ionization rates and modified the original parameterization. Using the new parameterization we compare our model results to observations with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Largest effects are observed in timeperiods after NO_x enhancements in agreement with observations, but also effects of ionization by galactic cosmic radiation is found in the model.

References:

Böhringer, H., Fahey, D.W., Fehsenfeld, F. C., and Ferguson, E. E.: The role of ion–molecule reactions in the conversion of N₂O₅ to HNO₃ in the stratosphere, *Planet. Space. Sci.*, 31, 185–191, 1983.

de Zafra, R. L. and Smyshlyaev, S. P.: On the formation of HNO₃ in the Antarctic mid to upper stratosphere in winter, *J. Geophys. Res.*, 106, doi:10.1029/2000JD000314, 2001.