



## Exhumation of large volumes of oceanic lithosphere during subduction: Examples from the Western Alps

Samuel Angiboust (1), Philippe Agard (1), Ryan Langdon (2), Dave Waters (2), and Christian Chopin (3)

(1) Institut des Sciences de la Terre, University Pierre et Marie Curie, Paris, France (samuel.angiboust@upmc.fr), (2) Department of Earth sciences, Oxford University, Oxford, United Kingdom, (3) Laboratoire de Géologie, Ecole Normale Supérieure, Paris, France

The Western Alps provide key insights into the behaviour of a portion of oceanic lithosphere during subduction and exhumation. The Zermatt-Saas (ZS) and Monviso eclogitized ophiolitic nappes (sandwiched between the Dora Maira and Grand Paradiso internal crystalline massifs and the upper, non-eclogitic Combin and Queyras Liguro-Piemontese units) provide a record of the detachment and subsequent exhumation of very large volumes of oceanic material along the subduction interface. We herein present a comparison of their structure, P-T paths and discuss potential mechanisms for detachment from the downgoing slab and exhumation processes.

ZS unit is internally made up by a series of several tectonic slices detached from the slab at ca. 80 km deep (550°C, 24 kbar; Angiboust et al., 2009). It is proposed that a particularly pervasive hydration of this portion of the Tethyan ocean floor led to the crystallization of lighter eclogite-facies assemblages, thus facilitating the later detachment of this relatively continuous portion of slab (~70km-across; Angiboust & Agard, 2010).

Detailed petrological and structural analysis on the Monviso ophiolite revealed the presence of relatively continuous boudins showing homogeneous P-T conditions (530-560°C; 25-27 kbar). These observations contrast with the common view that the Monviso ophiolite corresponds to a (chaotic) subduction melange. Moreover, we emphasize that many similarities exist between the Monviso and ZS ophiolites (200 km apart) in terms of parageneses, P-T-time conditions and overall structure. We propose a similar mechanism for the detachment and stacking of these two ophiolitic domains in a partially serpentinitized subduction channel, which could also apply to the other large pieces of oceanic lithosphere found in the Western Alps.