

Shoot-level monitoring of O₃ and NO_x fluxes of Scots pine (*Pinus sylvestris* L.)

Johanna Joensuu (1), Nuria Altimir (1), Maarit Raivonen (1,2), Pasi Kolari (1), Petri Keronen (2), Timo Vesala (2), Jaana Bäck (1), Pertti Hari (1), and Eero Nikinmaa (1)

(1) University of Helsinki, Department of Forest Sciences, Finland (johanna.joensuu@helsinki.fi), (2) University of Helsinki, Division of Atmospheric Sciences, Department of Physics, Finland

O₃ and nitrogen oxides (NO_x=NO+NO₂) are important atmospheric pollutants. Both are involved in atmospheric chemistry in various significant ways. O₃ is a greenhouse gas. Both gases have potentially harmful effects on plants, but NO_x can have nutritional as well as toxic effects. One of the processes underlying the atmospheric balance of O₃ and NO_x is their interaction with vegetation. Both are removed, absorbed, and NO_{rmx} potentially also emitted by the foliage. The mechanisms driving these processes are not known in sufficient detail for accurate modeling of leaf-level O₃ and NO_x fluxes for the needs of i.e. global atmosphere-biosphere models. For example, the role of biogenic volatile compounds (BVOCs) in ozone scavenging and the role of nitrate in the biological and chemical NO_x emissions require further research.

The SMEAR II (Station of Measuring Forest Ecosystem-Atmosphere Relations) station in Hyytiälä, Finland, is well-known for its series of shoot-level O₃ and NO_x fluxes measured on Scots pine (*Pinus sylvestris* L.) in the field. Measurements from shoot-scale gas exchange chambers have provided valuable insights into O₃ and NO_x exchange (i.e. Raivonen & al. 2009, Altimir & al. 2006). The measuring system has since been upgraded with at least two major improvements:

- A new chamber type was designed in order to remove the enclosure effect. The chamber is built as a sliding box that encloses the shoot only for the short time needed to make a measurement and otherwise allows the shoot to experience all occurring ambient conditions, including wind and rain.

-In order to allow targeted flux measurement of NO_x, not NO_y, the molybdenum converter of the NO_x analyser was replaced with a photolytic, NO₂-specific one.

We present preliminary results of O₃ and NO_x shoot-scale flux measurements after these improvements and discuss their value in increasing our understanding of the shoot-scale processes involving O₃ and NO_x.

Altimir N., Kolari P., Tuovinen J.-P., Vesala T., Bäck J., Suni T., Kulmala M. & Hari P. 2006. Foliage surface ozone deposition: a role for surface moisture? *Biogeosciences* 3 : 209-228.

Raivonen M., Vesala T., Pirjola L., Altimir N., Keronen P., Kulmala M. & Hari P. 2009. Compensation point of NO_x exchange: Net result of NO_x consumption and production. *Agric for Meteorol* 149(6-7):1073-81.