

Effect of ocean acidification on an Arctic phytoplankton community

Signe Klavsen (1), Richard Bellerby (2), Corina Brussaard (3), Susan Kimmance (4), Michael Meyerhöfer (1), Kai Georg Schulz (1), and Ulf Riebesell (1)

(1) Leibniz Institute of Marine Sciences (IFM-GEOMAR), Düsternbrooker Weg 20, 24105 Kiel, Germany, (2) Bjerknes Centre for Climate Research, University of Bergen, Allégaten 55, 5007 Bergen, Norway, (3) Royal Netherlands Institute for Sea Research, Landsdiep 4, 1797 SZ 't Horntje, The Netherlands, (4) Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon, PL1 3DH, United Kingdom

Ocean acidification (OA) is thought to influence cold regions first and hardest due to the high solubility of CO₂ and the resulting low carbonate saturation state. Therefore, a large CO₂ mesocosm perturbation experiment was carried out in the Kongsfjord (Spitsbergen) in June/July 2010. The impact of OA on the phytoplankton community was monitored in nine mesocosms (water volume \sim 50 m³) with CO₂ concentrations ranging from ca. 180 to 1400 ppm. The influence of CO₂ was monitored before (days 0 – 12) and after (days 13 – 30) nutrient addition (N, P and Si). The development and changes in the phytoplankton community were determined by microscopy, pigment analysis (rp-HPLC), flow cytometry and with a multi-fluorescence probe.

The data analysed until now indicate that the phytoplankton community composition was not affected by elevated CO₂ before nutrient addition. After nutrient addition, however, the composition of the phytoplankton community in mesocosms with low and high CO₂ developed differently: high CO₂-mesocosms had higher peridinin concentrations (marker pigment for dinoflagellates) than low CO₂-mesocosms and the opposite pattern was found for fucoxanthin (marker pigment mainly for diatoms). Thus, the preliminary results suggest that future changes in CO₂ may affect succession and distribution of phytoplankton taxonomic groups and species and this may potentially affect the biogeochemical cycling.