

Radiative energy balance at the Venus cloud top

Yeon Joo Lee (1), Dimitri Titov (1,2), Nikolay Ignatiev (3), Silvia Tellmann (4), Martin Pätzold (4), and Giuseppe Piccioni (5)

(1) MPS, Katlenburg-Lindau, Germany (leeyj@mps.mpg.de), (2) ESA/ESTEC, Noordwijk, The Netherlands, (3) Space Research Institute (IKI), Moscow, Russia, (4) Rhenish Institute for Environmental Research, Universität zu Köln, Cologne, Germany, (5) IASF/INAF, Rome, Italy

The upper cloud layer of Venus is known to play an important role in the radiative energy balance due to the presence of the UV absorber responsible for deposition of solar energy and efficient cooling to space. Observations suggest significant latitudinal changes of the cloud structure. From the equator to the pole, the cloud top altitude decreases from 74-67 km to 65-63 km while aerosol scale height changes from ~ 6 km to less than 1 km. These trends significantly affect radiative energy balance that forces vigorous atmospheric dynamics at the cloud top level. In this study we calculate thermal cooling and solar heating rates in 0.2-200 μm wavelength range, and investigate the effects of cloud structure on radiative energy balance. This work is based on the cloud and temperature structures derived from the radio science experiment VeRa and the thermal emission spectrometry from VIRTIS onboard Venus Express.