

New ice core records on the glacial/interglacial change in atmospheric delta 13C of CO2

Jochen Schmitt (1), Robert Schneider (1), Joachim Elsig (1), Anna Lourantou (2), Markus Leuenberger (1), Peter Koehler (3), Thomas Stocker (1), Dominique Raynaud (2), Jerome Chappellaz (2), and Hubertus Fischer (1)

(1) Climate and Environmental Physics, Physics Institute, & Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland (schmitt@climate.unibe.ch), (2) Laboratoire de Glaciologie et Geophysique de l'Environnement, CNRS, Grenoble, France, (3) Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

The reconstruction of the carbon isotopic composition of CO₂ ($\delta^{13}\text{C}$) using Antarctic ice cores promises a deeper understanding on the causes of past atmospheric CO₂ changes. Previous measurements on the Taylor Dome ice core over the last 30,000 years indicated marine processes to be dominating the significant $\delta^{13}\text{C}$ changes over the transition, whereas glacial $\delta^{13}\text{C}$ was only slightly depleted relative to the Holocene. However, significant uncertainty and the low temporal resolution of the Taylor Dome $\delta^{13}\text{C}$ data prevented a more detailed interpretation. Recently, substantial improvements have been made in the analysis and the resolution of ice core $\delta^{13}\text{C}$ records. With these and new measurements presented here, three independent $\delta^{13}\text{C}$ data sets over the last glacial/interglacial transition have now been derived from the two EPICA and the Talos Dome ice cores. Two of the methods use traditional dry extraction techniques with a reproducibility of 0.07-0.1‰. The third method uses a novel sublimation technique with a reproducibility of 0.05‰. Here we compare the data sets, their analytical setups and discuss their joint information as well as their differences. The three records provide a more detailed picture on the temporal evolution of $\delta^{13}\text{C}$ and confirm two pronounced isotope minima between 18-12,000 years BP in parallel to the two major phases of CO₂ increase as also reflected in marine sediments. Accordingly, a release of old carbon from the deep ocean is most likely responsible for a large part of the long-term increase in atmospheric CO₂ in this time interval. However, the fast CO₂ jumps at a round 12,000 and 14,000 years BP may be partly of terrestrial origin. The new sublimation data set provides also unambiguous $\delta^{13}\text{C}$ data for clathrate ice in the LGM. This shows a rather constant $\delta^{13}\text{C}$ level, which is only about 0.1‰ lower than the Holocene, despite significant changes in the terrestrial and marine carbon storage. Accordingly, during the LGM the changes in the different processes acting on the glacial carbon cycle largely compensate each other with respect to $\delta^{13}\text{C}$ as predicted by carbon cycle modeling.