

Ozone profile observations in Houston, Texas (1994 - 2010) from aircraft, balloons, and satellites

Gary Morris (1), Barry Lefer (2), Bernhard Rappenglueck (2), Christine Haman (2), Christopher Boxe (3), Scott Hersey (4), Daewon Byun (5), Valerie Thouret (6), Jean Pierre Cammas (6), and the NOAA ESRL Team

(1) Dept. of Physics and Astronomy, Valparaiso University, Valparaiso, IN, United States (gary.morris@valpo.edu, 219-464-5489), (2) Dept. of Earth & Atmospheric Sciences, University of Houston, Houston, TX, United States, (3) Jet Propulsion Laboratory, NASA, Pasadena, CA, United States, (4) Dept. of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States, (5) Air Resources Laboratory, NOAA, Silver Spring, MD, United States, (6) Laboratoire d'Aerologie, CNRS, Toulouse, France, (7) Earth System Research Laboratory, NOAA, Boulder CO, United States

Houston, Texas has long been an urban area plagued with high levels of surface ozone, particularly in spring and late summer. The combination of a large commuter population and one of the largest concentrations of petrochemical plants in the world results in abundant and nearly co-located sources of NO_x and hydrocarbons. The location of Houston on the South Coast of the United States in a subtropical climate results in meteorological conditions that favor ozone production. Using MOZAIC (1994 - 2004), ozonesonde (2000, 2004 - 2010), and TES (2005 - 2010) data, we examine the evolution of ozone profiles over Houston during a period in which various strategies have been implemented to alleviate the ozone pollution problem. Using meteorological data from associated soundings and analyses, we identify and evaluate influences on the ozone profiles from natural and anthropogenic sources, as well as local and remote sources. We further investigate how these various influences have changed with time.