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The central problem in karst hydrology?

Karstic Aquifer

Conduits largely determine the flow and transport
through the system, but in most cases we have
incomplete information about the conduit network.



Using Spring Response to Probe Conduit System Geometry

* Analysis of hydrographs/recession curves (many studies)
Limitations: can be a strong function of recharge
(Covington, Wicks, and Saar, 2009, WRR;

Mahler, 2009, GSA; Martin and Bailey-Comte, submitted).

» Correlations between thermal and chemical responses and
conduit geometry (e.g. Ashton, 1966; Benderitter et al. 1993;
Liedl, Renner, and Sauter, 1998; Grasso et al. 2003;

Birk et al. 2004, 2006; Luhmann et al., in review)




Equations for Heat Transport in a Karst
Conduit
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Cylindrical Heat Conduction Equation
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Convection and conduction act in series to control heat exchange
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and conduction act in series to control heat exchange
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Convection anct Iin series to control heat exchange
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act in series to control heat exchange
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Convection-limited Conduction-limited
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The different approximations produce dramatically
different behavior
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The appropriateness of each solution is determined
by a characteristic time scale

- At early times, the skin depth of the heat pulse in the
conduit wall isi very shallow, andl conductive rates

are accordlngly nIgh;, suchi that the convectlon Iimitead
solutiarn ore dESid oedrape OXimation
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This time scale can be approximated using analytical solutions of a
heat pulse propagating into a semi-infinite solid.
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Time scale over which conduit wall reaches water temperature




Convectioand conduction act in series to control heat exchange
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What about heat exchange in open channel conduits?
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Ratio of heat fluxes at the water/rock and air/rock interfaces
as a function of time
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Tyson Spring Cave, Fillmore County, MN, USA




PIVKA JAMA

Postojna Cave
System, Slovenia
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How well do simulated and observed conduit
diameters compare?

Postojna Cave:
Simulated diameter = 1.5 m
Average surveyed diameter = 2.0 m

Tyson Spring Cave
Simulated diameter = 0.3 m
Average surveyed diameter = 1.4 m




How well do simulated and observed conduit
diameters compare?

Postojna Cave:
Simulated diameter = 1.5 m
Average surveyed diameter = 2.0 m

Tyson Spring Cave

Simulated diameter = 0.3 m

Average surveyed diameter = 1.4 m
Diffuse recharge??




- The relative importance of heat exchange mechanisms
is a function of time. Rock conduction dominates the
heat exchange at the water-rock boundary after only a
few seconds.

- Conduction dominates the exchange at the rock-air
boundary at times scales on the order of days to weeks.

- Conduction cannot be ignored in models of conduit heat
exchange.

- Temperature provides a potential means of constraining
diffuse recharge into conduits.
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