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Knowledge of temperature field in deep crustal layers is 
often of considerable importance in assessment and 

exploration of Enhanced Geothermal Systems. 

Context of the present work

Results of regional heat flow studies are usually employed 
for this purpose. However, there are large uncertainties in 
downward continuation of gradient and heat flow values 

measured at shallow depths. measured at shallow depths. 

In the present work we propose that elevation and 
geoid height (which are also indicators of 

subsurface thermal state) may be used, jointly 
with heat flow, in obtaining better estimates of 
the deep thermal field in geothermal areas. 



Lachenbruch and Morgan (1990) discussed models of crustal 
and lithospheric structure based on elevation and heat flow 

data.  Fullea et al (2007) extended this approach by 
incorporating geoid height as an additional constraining 

parameter.

Methodology Employed

In this work, we present a refinement of this technique 
which admits surface heat flow as an input parameter and 
in addition allow for the effects of vertical variations in 

The technique employed is based on computationally stable 

iteration schemes and provide simultaneous checks for 

compatibility of the inversion results with observational 

data on surface heat flow, radiogenic heat production, 

elevation and geoid height.

in addition allow for the effects of vertical variations in 
thermal conductivity and radiogenic heat production.



Basic assumptions in Join Inversion of heat Flow, 
elevation and Geoid Height 

1- Conditions of thermal isostasy prevail;

2- Lateral variations in density are small compared to 

vertical changes.

Under such conditions the geoid height is proportional to 

the dipole moment of the vertical distribution of density

(Ockendon e Turcotte, 1977; Turcotte e Oxburgh, 1982): 
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Under conditions of local isostasy the relation between 
elevation and crustal thickness is:
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The mantle density is assumed to be temperature dependent 

This couples isostasy to the thermal field 



1- Use computed values of depth to base 

lithosphere (z l) and estimated value of 

mantle heat flow (q m)

Methods of estimating temperatures at the base of the crust

Fullea et al, 
2007

Coupling isostasy to the thermal field require 
knowledge of temperatures 

The advantages of this latter approach is that crus tal temperature field 

may be derived from experimental heat flow data (ra ther than estimated 

moho heat flow) and it is possible to incorporate t he effects vertical 

variations in the thermal properties of the crust.

2- Use computed values of depth to base 

crust (z c) and measured values of surface 

heat flow (q 0)

Alexandrino & 
Hamza, 2008



where z is the depth, T is temperature, λ(T) the thermal conductivity, Ao is 
the heat production in near surface layers and D is logarithmic decrease of 

heat production with depth. 
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Thermal model of the crust

Consider the differential equation for steady-state temperature 
distribution in a medium with heat sources:
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Heat flux at the surface:

Temperature at the surface:

Phonon and Radiative 

processes contribute to overall 

Thermal Conductivity:
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The general equation for isostasy may be expressed as a 
quadratic relation for the thickness of the lithosphere:

The relation for geoide height becomes:The relation for geoide height becomes:
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The combined solution of these equations allow analysis of 
elevation and geoide height under conditions of thermal isostasy



Iterative schemes are necessary because of 
the non-linearity of the equations

Computational steps of Fullea et al, 2007 and Alexandrino & Hamza, 2008

•1. Estimate the initial values for Z C and ZL, assuming constant density for crust
and mantle;

•2. Use the initial value of Z C for calculating the depth to the base of the
lithosphere, which couples isostasy to the thermal field;

•3. Calculate temperatures at the base of the crust (Tc) and of the lithosphere•3. Calculate temperatures at the base of the crust (Tc) and of the lithosphere
(Ta) using values of Z C and Z L of step 2 and measured values of surface heat
flow q m;

•4. Calculate the thermal conductivity the crust ( λc) and lithosphere ( λm) using
values of T c and Ta of step 3;

•5. Calculate the geoid height using Z C , ZL , Tc , Ta , λc , and λm obtained in steps
3 and 4;

•6. Determine the residual anomaly (calculated – observed);

•7. Change the value of Z C and repeat the process until the residual anomaly is
minimized.



Moho Temperature

Equation 10

θ 133,79

Input data Module

Moho Temperature

Equation 10b
θ 139.32

delta 1.38E+08

Fullea et al, 2007 Alexandrino & Hamza, 2008

θ 133,79

delta 1,1860E+08

deltaK 0,70

delta 1.38E+08

deltaK 1.09

Param B 6.82E-04

Param C 6.32E-10

Surface Heat Flow 5.00E-02

Thermal Conductivity 3.00



Single iteration - Initial Estimates

Moho Depth (km) zc ref 26,95

Lithosphere Thickness (km) zL ref 91,30

Modules of Iterative Processes

Fullea et al, 
2007

Multiple Iteration Process

Moho Depth (km) zc ref 26.23

Lithosphere Thickness (km) zL ref 83.80

Feedback of Z L based on heat flow 83.88

Alexandrino & 
Hamza, 2008



Input  Parameters

Density at top ρc t 2640,00

Density at bottom ρc b 2920,00

Average density ρc m 2780,00

Mantle density ρm 3293,92

Density 
asthenosphere

ρa 3200,00

Density of water ρw 1030,00

Compensation Level z max 300000,
00

Coeficient of 
expansion

α 3,50E-
05

Radiogenic heat Hs 8,20E-
07

D parameter hr 1,05E+0
4

Crustal conductivity kc 2,5000

Thickness  Lithosphere
Equation 12

eta -8,299E+06
3,241E+03

a 3,241E+03
Term 1 -1,769E+08
Term 2 2,160E+06
Term 3 1,349E+08

-3,096E+08
b -3,096E+08

Term 4 2,355E+12
1,104E+12

c 1,250E+12
1,250E+12

delta 2,822E+08
r1 4,2252E+03
r2 9,1304E+04
ZL 9,130E+04

Hydro Geope Anomaly
Equation 13

Beta 1,020E-02
a -2,142E-11
b 2,575E+08
c 1,331E+11
d 1,921E+12
e 2,857E+14

g1 3,131E+01
g2 9,344E+09
g 2,925E+11

Sum 2,880E+14
product -6,1707E+03

N = -6,1707E+03

Reference Hydro Geope
Equation A4 (case b)
ππππ G / g 2,142E-11

Equation A1
Termo 1 257500000,00
Termo 2 1,8351E+12
Termo 3 2,5284E+13
Termo 4 2,6132E+14

Soma 2,8844E+14

Equation A2
a 7,424E+06
b 8,050E+05
c 8,5751E+06

soma 1,680E+07
d 6,539E+02

divisão 2,570E+04
Zc 2,570E+04

Equation A3
kapa 8,299E+06

Spreadsheet Layout for Modules of Input Data

Crustal conductivity kc 2,5000

Mantle  Conductivity km 3,2000

Surface temperature Ts 20,00

Temp. base 
lithosphere

Ta 1350,00

Elevation E 500,00

Geoide 
Asthenospheric

Lo 2320,00

Gravitational 
Constant

G 6,67E-
11

PI pi 3,14

acceleration g 9,79

Radiogenic heat f 83,79

ZL 9,130E+04

Zc 2,695E+04

Temperature Moho

Equation 10
θ 133,79

delta 1,1860E+08

deltaK 0,70
TMoho 511,45

Mantle density
Equation 11

ρm m 3246,96

ππππ G / g 2,142E-11
((ρm-ρw)/(ρm-ρa)) E 1,205E+04

2 ρa L0 1,485E+07

(ρa-ρw) E 2,115E+06
2 ρa L0 + (ρa-ρw) 

E
1,696E+07

Product 1 2,044E+11
Z0

2 ρa 2,880E+14

(ρa L0)2 / (ρm-ρa) 5,869E+11

Sum 2,888E+14
Noc = 6,1872E+03

kapa 8,299E+06
Termo 1 2,381E-03

Termo 2 5,472E+00
Termo 3 6,8873E+13

Termo 4 -1,863E+14
Termo 5 2,5517E+14

ZL 1,0873E+05

Equation A4 (case a)
a 2,142E-11
b -4,375E+08
c 2,880E+14
d 1,640E+11

Soma 2,878E+14
No - N = 6166,73

Estimates of  Iterative  Process
Moho depth (km) zc ref 26,95

Base of lithosphere (km) zL ref 91,30

Hydro Geope Residual
Geoide Height - calculated -4,00
Geoide Height - observed -4,00

Residual (observed - Calculated) 0,00

2 – Modules for Iterative Steps



Study area: 

Gibralter Arc System

Heat Flow Geoid Height



Temperature Distributions



Eastern  
Alboran  
Basin, 

Mediterranean

Parameter Fullea et al This work Difference Error
(%)

Moho Depth (km) 21.5 18.4 3.1 14.5%

Depth to base of 
Lithosphere (km) 86.2 64.2 22.0 25.5%

Moho Temperature 425.6 541.9 -116.3 -27.3%

Comparisons illustrating the differences between the 
results of Fullea et al (2007) and this work

Atlas 
Mountains,
Northwest 
Africa

Parameter Fullea et al This work Difference Error
(%)

Moho Depth (km) 35.3 31.3 4.0 11.1%

Depth to base of 
Lithosphere (km) 160.3 138.5 21.7 13.6%

Moho Temperature 399.4 500.1 -100.6 -25.2%



Effect of Hydrothermal circulation

This is a major source of error in estimation of deep 
temperatures in enhanced geothermal systems.

The conventional methods based on results of 
gradient and heat flow measurements in shallow 
boreholes is incapable of prviding satsfactory 

solution.

The temperatures are usually overestimated. 

In the method based on joint inversion of Elevation –
Geoid Height- Heat Flow this problem can be solved 
by introducing in the input and interactive modules a 

geologically reasonable estimate of the fluid 
circulation depth.



Input data Module for minimizing the effects 
of hydrothermal circulation

Moho Temperature

Equation 10b
θ 139.32

delta 1.38E+08

Standard Input

Moho Temperature

Equation 10b
θ 139.32

delta 1.38E+08

Modified Input

deltaK 1.09

Param B 6.82E-04

Param C 6.32E-10

Surface Heat Flux 5.00E-02
Thermal

Conductivity 3.00

deltaK 1.09

Param B 6.82E-04

Param C 6.32E-10
Perturbed 

Surface Heat Flux 12.00E-02

Conductivity 3.00
Hydrothermal 

Circulation Depth 3.00



Iterative module for hydrothermal Circulation

Multiple Iteration Process

Moho Depth (km) zc ref 26.23

Lithosphere Thickness 
(km) zL ref 83.80

Feedback of Z L based on heat flow 83.88

Standard 

Multiple Iteration ProcessMultiple Iteration Process

Estimated Depth of 
hydrothermal circulation Zh 3.00*

Moho Depth (km) zc ref 26.23

Lithosphere Thickness 
(km) zL ref 83.80

Feedback of Z L based on heat flow 83.88

Modified 

* Estimate based on related geophysical (for example seismic) and 
geological data



Results of Numerical simulation for q0 = 120 mW/m2
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Application in area of tectonic stability: São Francisco structural province

Heat Flow Map



Isostasy in São Francisco structural province
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Temperature distributions in the main tectonic units



Conclusions

Methods based on simultaneous inversion of

heat flow, elevation and geoid height, provide

better estimates of deep thermal field in

enhanced geothermal systems.

In addition, it takes into consideration effects of

vertical variations in thermal properties.

The method also provides reliable results in the

presence of perturbations induced by

hydrothermal circulation.
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