

Assimilation of snow cover data in a distributed rainfall-runoff model Tomasz Berezowski* Jarosław Chormański* Okke Batelaan**

EGU General Assembly, Vienna, 5.04.2011

* Warsaw University of Life Sciences, Dept. of Hydraulic Structures
** Vrije Universiteit Brussel, Dept. of Hydrology and Hydraulic Engineering
** Katholieke Universiteit Leuven, Dept. of Earth and Environmental Sciences

Outline

- Background
- Study area
- Snow cover patterns
- Snow Cover Area (SCA) interpolation
- Snow melt model
- Hydrological modeling results
- Conclusions

Background

• Glen E. Liston (1998) Interrelationships among snow Distribution, Snowmelt, and Snow Cover Depletion...

Melt volume (t) = Area * Melt Rate(t) * SC fraction(t) * dt

- Parajka J. et al. (2010) A regional snow-line method for estimating snow cover from MODIS during cloud cover
- Matt Sturm and Anna M. Wahner (2010) Using repeated patterns in snow distribution modelling...

Biebrza River Catchment

Biebrza River Catchment

Subpixel Snow Frequency Patterns

• Summary of 10-yr (2001-2011) daily MOD10A1 snow cover fraction time series

Frequency: White – 56% Black – 14%

Subpixel Snow Frequency Patterns

Subpixel Snow Frequency Patterns

- Summary of 10-yr (2001-2011) daily MOD10A1 snow cover fraction time series
 - Frequency: White – 100% Black – 0%

Identification of Patterns

- Stepwise selection of multiple linear model
- Input: Land-use, geology, peat type, elevation
- Insignificant input: slope & aspect
- Mean absolute error $\sim 5\%$ SCA, $r^2 = 0.75$

SCA Interpolation:

- 1. Missing Data is replaced with SCA obtained from the most corelated patches
- 2. If Missing Data > Treshold, changes in SCA are simulated in refference to snow depth in a meteo station
- Mean absolute error: 20% to 40% SCA

SCA Interpolation:

Snowmelt model

• Instantaneous melt depth from subcatchment:

M = *SCA x temperature x day-degree constant*

• Series of linear reservoirs:

q = k x M

• River routing with the WetSpa IUH:

$$U_{i}(t) = \frac{1}{\sqrt{2\pi\sigma_{i}^{2}t^{3}/t_{i}^{3}}} \exp\left[-\frac{(t-t)^{2}}{2\sigma_{i}^{2}t/t_{i}}\right]$$

BY

Conclusions

- Snow distribution is related to elevation, land-use and other features like groundwater discharge areas
- SCA patterns allows to interpolate missing data under cloud cover
- SCA variability in catchment is important for distributed hydrological modeling
- Snowmelt runoff is rather a slow flow than a quick flow