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Introduction

For the analysis and inversion of potential field data, several approaches
are known:

I expansion in orthonormal polynomials,
I spline approximation,
I wavelet analysis.

Each method uses particular basis systems. Whereas the classical first
approach uses global basis functions (such as spherical harmonics), the
latter two proved to be advantageous for high-resolution analyses due to
the construction of localized basis functions (spline basis functions,
scaling functions, and wavelets). However, the drawback of the wavelets
developed for such applications is their inflexibility with respect to
heterogeneous data. Furthermore, the numerical limit of spline methods
is given by the size of the dense matrix that has to be inverted in the
algorithm. Moreover, all methods are incapable of using a mixture of
different kinds of basis functions.
We will show here that an adaptation of a greedy algorithm developed
for the Euclidean setting (see e.g. [4, 6]) allows us to overcome these
drawbacks. We iteratively increase the resolution and accuracy of the
obtained model, which avoids the inversion of a matrix and allows
theoretically an unlimited number of summands in the expansion.
Moreover, the expansion functions are chosen from a so-called dictionary,
which may be a very heterogeneous mixture of all kinds of trial functions.

The idea

We intend to construct an approximate solution of the form

F =
∑
k

αkdk

in the following way:
I Each summand is chosen iteratively, i.e. we move from Fn :=

∑n
k=1αkdk

to Fn+1 :=
∑n+1

k=1αkdk.
I Every dk is a function which is selected from a dictionary D ⊂ L2(B),

which is a redundant system of functions, i.e. it contains global functions
G I
m,n,j and kernels K I

hj
(xi ,j, ·) with different localizations (controlled by hj)

and different centers xi ,j .
I The coefficients αk ∈ R are chosen in combination with the dictionary

elements dk.
I The objective is to minimize

‖y −F (Fn + αn+1dn+1)‖2
Rl +λ ‖Fn + αn+1dn+1‖2

L2(B)

for given F : L2(B)→ Rl (linear) and y ∈ Rl , where λ is the
regularization parameter.

The algorithm RFMP

1) Start with F0 := 0, R0 := y , n := 0.

2) Build Fn+1 := Fn + αn+1dn+1 such that

dn+1 = argmax
d∈D

∣∣∣∣∣∣∣
〈Rn,Fd〉Rl−λ〈Fn, d〉L2(B)√
||Fd ||2Rl+λ||d ||2L2(B)

∣∣∣∣∣∣∣ and

αn+1 :=
〈Rn,Fdn+1〉Rl−λ〈Fn, dn+1〉L2(B)

||Fdn+1||2Rl+λ||dn+1||2L2(B)

3) Update the residual Rn+1 := Rn −F(αn+1dn+1).

4) Stop or increase n by 1 and go to Step 2.

The dictionary

Examples of basis functions for the 3d-ball, plotted on the surface or a
planar cut

Application: Inversion of gravitational data

I 25,440 (simulated) data of the EGM2008 potential on a point grid 7 km
above the Earth

I dictionary of the form described above
I the regularization parameter λ = 4.6416 is chosen via the L-curve

method
I the algorithm is truncated after 20,000 summands were chosen for the

expansion

Numerical result

Harmonic density variations (left-hand), chosen centres of the localized
basis functions (middle), and local influence of the basis functions
(right-hand)

result centres local influence

Combined inversion (gravitation and normal modes)

We combine 1,560 gravitational data points (from EGM2008) and 1,738
splitting functions coefficients (data courtesy of Arwen Deuss,
Cambridge) and stop the algorithm at n = 10, 000.

equatorial cut (with enlarged upper 300 km)

Conclusions

The new algorithm has several new features in comparison to previous
approaches:

I The obtained solution is sparse, i.e. the same number of expansion
functions yields a more accurate result.

I Different kinds of basis functions can be combined. The algorithm
automatically chooses those which yield the best possible reduction of
the approximation error.

I There is no numerical limit any more for the number of used basis
functions.

I Different data types may be mixed, where much more data than
previously may be used.
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