

Variability of CO₂ in an urban environment: from street canyon to neighborhood scale

Björn Lietzke

Institute for Meteorology, Climatology and Remote Sensing Department of Environmental Sciences University of Basel, Switzerland

Outline

Background / Motivation

Why measuring CO₂ in urban environments

Experiment

Goal, Sites, Setup

Results

Mean diurnal patterns of CO₂ concentrations and fluxes

Summary, Conclusions & Outlook

Background / Motivation

Why measuring CO₂ in urban environments

Modeling the global carbon cycle:

Quantifying the role of cities is a crucial part and not well known today.

Methodological uncertainties:

Limitations of single-point measurements in complex urban environment.

Reliability of micrometeorological standard-methods in urban environments?

Experiment

Goal

Investigation of micro to local scale variability of CO₂ concentrations and fluxes in a dense urban environment.

Focus

- 1. Comparison of two urban CO₂-flux sites over more than one year.
- 2. Micro to local-scale CO₂-exchange processes in and above a street canyon.

Measurements

Basel, Switzerland. June 2009 to March 2011 (Data period: 15.10.2009 - 17.01.2011, ~15 months)

Experiment: Sites

Site 1: Basel, Klingelbergstrasse, "Street Canyon" (BKLC)

Site 1: Instrumentation & setup (BKLI/BKLC)

Inertial Sublayer

E, F

A-E, A-F

A, C-E, F

neral Assembly 2011

Site 2: Basel, Aeschenplatz (BAES), Turmhaus

Mean diurnal CO₂ concentrations

Mean diurnal CO₂ fluxes (F_C)

Comparing Fluxes (BKLC) and Sources (Traffic)

Traffic & FC 1.4 17 15 1.2 13 All working days 1.0 (Mo-Fr) Scaled (4h & 9h-value) 8.0 mean diurnal traffic density and F_C 0.6 39 m → Qualitative comparison 0.4 F_c 19m F_c 39m 0.2 Traffic (vehicles/h) Е 19 m 0.0 D С 9 m В 6 m 15 20 10 0 5 3 m Traffic & FC (Saturdays) Traffic & FC (Sundays) 1.4 1.4 1.2 1.2 17 19 1.0 1.0 15 17 19 0.8 Saturdays / Sundays 8.0 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 0 5 15 20 5 10 15 20 10 0

Wind rose BKLI

Vertical profiles of mean diurnal CO₂ concentrations

Summary, Conclusions & Outlook

Conclusions

- One city, two different sites and as expected: two totally different diurnal flux patterns (ISL).
- Traffic emissions are well represented by street layer (UCL) flux measurements.
- Sensor location of great importance (ISL).
- Street layer CO₂ distribution strongly depending on wind direction & building / city geometry .

Outlook

- Further examination of comprehensive dataset planned.
- Comparison with CFD simulations → better understanding of micro scale processes.

