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Introduction
To use simulation as a tool to investigate the impact of possible climatic changes on lakes, input data reflecting these
changes is needed. Using vector-autoregressive processes fitted to measured data, one can produce multivariate time
series. These can be adjusted to reflect changes in meteorological conditions. However, simply changing values of one
variable (e.g. increasing the mean of the temperature) treats the variables as being independent and thus neglects the
dependency structure between them.
To overcome such problems, a vector autoregressive moving average weather generator was developed to generate
multivariate time series that retain the statistical properties of the original data. The seasonalities, as well as covariances,
auto- and cross-covariances are to be reproduced in synthetic time series.
Furthermore, to study the impact of changing climatic conditions on lakes, first and/or second order moments of the
temperature are modified while still trying to maintain the dependency structure. In this sense, the weather
generator is “co-shiftable”, meaning that changes in one variable will cause the other variables to change accordingly to the
covariance matrix of the measured data.
The variables in question are air temperature, humidity, long- and shortwave radiation and wind. The Vector-Autoregressive
Weathergenerator (VG) is primarily being designed to provide the means to model “What if?”-scenarios. For a work that
uses VG and is mainly directed towards process understanding concerning the mixing behaviour of Lake Constance see
“Climate sensibility of a large lake - a scenario study using a 3D hydrodynamic model and a statistical weather generator
by Maria Magdalena Eder in Session “Lakes and inland seas” (HS10.2/OS2.3) (Friday, 08 Apr 10:30â12:00).

Input Data

The available data was measured hourly in Constance, Germany during the period of 1980 to 2001 by the Deutscher
Wetterdienst (DWD). In the subsequent analysis daily means were used.

Modeling overview

1 Convert the input variables into standard-normal distributed variables.
2 Fit a Vector Autoregressive Moving Average Model (VARMA) to the converted variables.
3 Simulate using Multivariate-Gaussian distributed random disturbances with either:

no changes
increased mean for the temperature
increased variance for the temperature
increased mean and variance for the temperature

4 Converting back to the fitted marginal distribution.

Transformation and De-seasonalization
The measured variables are converted into standard-normal distributed variables using a
Quantile-Quantile-Transformation. To account for the strong seasonalities inherent in the data, the parameters of the
theoretical distributions are described using triangular functions of different forms:
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Where pi is any distribution parameter and doy is the day of the year. The choice of the form of triangular function depends
on the variable and the chosen theoretical distribution. While the temperature can be described with a normal distribution
and the mean of the temperature closely follows a simple sinus curve (see Figure ??), such description is not sufficient for
short-wave radiation. The parameters of the triangular functions are then estimated by Maximum-Likelihood using
Simulated Annealing. Note that this is an optimization problem with constraints, as some distribution parameters (e.g. α
and β in the Beta distribution) are positive. This has been overcome by only drawing feasible solutions when generating a
new candidate solution during Simulated Annealing.

Fitting results

Figure: Normal distribution fitted to daily mean temperatures using equation ?? to
describe mean and variance. Circles are the measurements, colours indicate the
probability density.

Figure: Kumaraswamy distribution fitted to daily mean short-wave radiations using
equation ?? to describe the distribution parameters a and b. Circles are the
measurements, colours indicate the probability density. (The Kumaraswamy distribution
is similar to the Beta distribution. Its pdf: f (x ,a,b) = abxa−1 (1− xa)b−1 does not contain
a transcendental function and is faster to evaluate.)

The Vector Auto Regressive Moving Average (VARMA) Process

yt = µ + A1yt−1 + ... + Apyt−p + ut + M1ut−1 + ... + Mqut−q (3)
yt is a K -dimensional vector, K the number of variables, µ are the process means, Ai are (K × K ) matrices, p is the order of the auto regressive
process, ut are residuals (i.e. the part of the time series the model cannot “explain”), Mi are (K × K ) matrices, q is the order of the moving average
process.
Under the assumption that the process is Gaussian, a Likelihood function can be formulated. The problem, however, is non-linear and an iterative
optimization algorithm (the scoring algorithm) is discussed in [?]. In this work a preliminary estimator was used that is otherwise the starting solution
for the scoring algorithm. For obtaining the preliminary estimator one first needs to estimate the residuals ut with the help of a Vector Auto
Regressive (VAR) model of high order p̂ (higher than either p or q. The fitting of the VAR model can be done with the help of a least squares
estimator (minimizing the residuals ût). The computation of the VARMA parameters is then again a matter of minimizing residuals.

Simulating a VARMA Process
Generating synthetic time series can be done by setting starting vectors ỹi for i ∈ {1, ..,p} (e.g. to the process means µ approximated by the sample
means y ) and applying equation ?? recursively. The disturbance vectors ũt can be generated as multivariate Gaussian random numbers with the
covariance matrix of the residuals ut , Σu.
After fitting either VAR or VARMA processes, it became apparent that the residuals had a strong autocorrelation. So, when simulating using
time-independent disturbance vectors, the simulated time series lacked the autocorrelation of the measured data. This was overcome by
generating disturbance vectors with a memory by taking the mean of a newly disturbance vector and the q previous disturbance vectors.
Autocorrelations of measured and simulated time series are shown in figure ??.

VARMA Simulation results
All following time series were simulated using a VARMA(p=1, q=6) process.

Simulating with changed mean and variance
To attain different moments in the simulated time series one can change the disturbance vectors at each iteration step:

ỹt = y + A1ỹt−1 + ... + Apỹt−p + Sũt + m + M1ũt−1 + ... + Mqũt−q (4)

S is a matrix of the form

S =


s0 0 ... 0
0 s1 ... 0
... ... . . . ...
0 0 .... sK

 (5)

si parameters to change variances, m is a vector to change means, respectively.
The covariance matrix of the time series ỹi (Σ̃y ) is slightly changed, since Σ̃u 6= Cov (Sũt). Yet the dependency structure does not change too
drastically, since Σ̃y is mainly influenced by Ai and Mi .

VARMA Simulation results: Changed mean and variance of temperature
The following time series was generated using stemperature = 4 and mtemperature = 1. All other si are 1 and all other mi are 0.

Autocorrelations of measured and simulated data

Figure: The different autocorrelations for the wind velocity probably come from the bad
fit of the seasonal distribution.

Summary

Data that exhibits seasonalities can be transformed by describing its distribution parameters with triangular functions.
Ordinary VARMA processes can be easily modified to simulate scenarios.
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