4D imaging of fracturing of organic-rich shales during heating

Maya Kobchenko¹

H. Panahi¹, F. Renard^{1,2}, J. Scheibert¹, D. Dysthe¹, A. Malthe-Sørenssen¹, A. Mazzini¹, B. Jamtveit¹ and P. Meakin^{1,3}

Petromaks, NRC

¹ PGP, University of Oslo, Norway ² UJF and CNRS, Grenoble, France ³ INL, Idaho Falls, USA

maya.kobchenko@fys.uio.no

Primary migration – transport of hydrocarbons from low permeability source rocks to reservoir

How does oil/gas escape from tight shales?

- Real-time 3D tomography of fracturing during heating of shales
- Thermogravimetry and gas chromatography
- Petrography of thin sections before and after heating

Green River Shale, USA

Immature black shales TOC ≈ 10%

http://www.eia.doe.gov/oil_gas/rpd/shale_gas.pdf

X-ray micro-tomography

- Image density map
- 1500 projections reconstructed into 3D image
- 15 minutes/3D image

Sample setup

- Heating rate 1°C/min
- In air, atmospheric pressure
- Without confinement

Correlation analysis

Fracturing at 353°C

Cracks opening: 15-20 µm

3D image analysis

- Cracks are parallel to the lamination
- Rough surface
- Irregular outlines

Fracture evolution in time

- Nucleation of small cracks
- Growth of separate cracks
- Coalescence into one big crack

Thin sections - Optical imaging

Summary:

- Organics starts to decompose around 350°C, causing volume increase and pressure build up leading to fracturing.
- Cracks nucleate, grow and coalesce until a percolation network spans the sample

