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•Figure 2 ↓ shows wind tide and river discharge forcing obtained from observations and the •The data shows good agreement although the model has not•Figure 2 ↓ shows wind, tide and river discharge forcing obtained from observations and the •The data shows good agreement although the model has not
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•A longer spin up period would increase the extent of upwelling•A longer spin up period would increase the extent of upwelling
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Figure 2 Wind velocity River discharge velocity
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Figure 4 Model Salinity cross‐section after 620 hours at the transect indicated by the green line in Figure 1 Figure 6 Silicate conc. cross‐sections. Field data a and c, model data b and dFigure 4 Model Salinity cross‐section after 620 hours at the transect indicated by the green line in Figure 1  Figure 6 Silicate conc. cross sections.  Field data a and c, model data b and d 
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