

When black swans ...

Nick Watkins (British Antarctic Survey)

Session NH9.1/EG8, room 1 Thursday, 07 Apr 2011, 08:30

.... come in bunches: modelling the impact of temporal correlations on the return periods of heavy tailed risk

Nick Watkins (British Antarctic Survey)

Session NH9.1/EG8, room 1 Thursday, 07 Apr 2011, 08:30

With:

- Sam Rosenberg (now Barclays Capital)
- Sandra Chapman (Warwick)
- Mark Naylor (Edinburgh)
- Mervyn Freeman (BAS)

Thank:

- KITP 2008 "Physics of Climate Change"
- AGU 2010 Chapman Conference, Hyderabad

Events ...

Events ...

Events ...

Interacting societal black swans ...

Guardian.co.uk, 22nd March 2011

"Black swans", extremes, bursts ...

BLACK SWAN

The Impact of the HIGHLY IMPROBABLE

Nassim Nicholas Taleb

" Is it a bird, an extreme event, or a cliche ... ?" – The Economist, March 2011

My personal motivation ...

Common threads: intermittent energy release & toppling events, in complex systems.

16 June 2011

Frequency-magnitude relationships

Magnitude "1" ~ 200 times more frequent than magnitude "10" which in turn is about 200 times more frequent than magnitude 100. Histogram tail ~ power law.

16 June 2011

For a power law the PDF P(x) then has tail decaying as power –(1+ α).

Example: Near Earth Objects

Heavy versus light tails

• Top trace shows skewed α -stable noise (α =1.8). Lower trace shows a Gaussian white ^{16 June 2011} noise (essentially no events outside +/- 3σ)² But does knowing <u>how often you</u> <u>see</u> events always indicate <u>how</u> <u>long you'll wait</u> for next one?

- No ! Not necessarily after all, even white Gaussian or α -stable noises can show apparent clusters
- But more profoundly--magnitudes need not be independent ... may be autocorrelated (e.g. AR(1)) or even long range dependent ("1/f") ...

Black swans may be bunched

Mandelbrot:

Long range dependence, or "the Joseph effect"

My "physicist's wheat"---illustrates Pharoah's dream of 7 years of plenty (green boxes) and 7 years of drought (brown boxes). Now shuffle series ...

Point is that frequency distribution (of this sample at least) unaffected by shuffling, but that the two series represent <u>very</u> different worlds.

Heavy tails plus Joseph effect

• Top trace adds Ird to α -stable noise (d=0.2) • Lower trace compares a Gaussian white noise

Bursts

Less obviously, strong correlation may integrate several "mediocre" events into a longer-lived "extreme" burst ... activity burst concept from Bak et al's Self Organise Criticality naturally interpolates between this & individual spikes.

Linear Fractional Stable Motion, a random walk model of how heavy tails & Joseph effect conspire to produce bursts $X_{H,\alpha}(t) = C_{H,\alpha}^{-1} \int_{R} \left[(t-s)_{+}^{H-\frac{1}{\alpha}} - (-s)_{+}^{H-\frac{1}{\alpha}} \right] dL_{\alpha}(s)$ Memory kernel: α-stable jump: Joseph effect heavy tails

• Mandelbrot's fractional Brownian motion but integrates α -stable rather than Gaussian

^{16 June 2011} <u>noise</u> (e.g. Samarodnitsky & Taqqu book).¹⁷

Simulations of light-tailed bursts

 Tail pdf of burst size s, and dependence of s on duration T predicted to have exponents γ=-2/(1+H) & β=2-H & respectively Watkins *et al*, PRE, 2009.

 Good agreement in Gaussian (fBm) limit: Confirmed findings of Carbone *et al* [PRE, 2004] & Rypdal and Rypdal [PRE, 2008].

Simulations of heavy-tailed bursts • Watkins et al, PRE, 2009 found expressions also reasonable down to $\alpha \sim 1.6$, but to fail completely by $\alpha = 1$:

Plot taken from work in progress on detailed uncertainty analysis, larger ensemble etc.

Burst length exponent, β , vs. H for α =1.6, &40 trials / exponent

Conclusions I

- Assessing hazard from Black Swans requires consideration not only of their relative frequency but also their bunching.
- Motivated by data and by models like SOC (which sought to unify these effects), we have begun to look theoretically and numerically at bursts in a rich toy model, LFSM [Watkins et al, PRE, 2009].
- Initial results promising-but need to flesh out.

Conclusions II

- Now need to: Explore <u>stationary noises</u> like αstable FARIMA as well as <u>self-similar walks</u> like LFSM
- Link our burst results to Extreme Value Theory and theory of records
- Examine our assumptions about stationarity and about data coming from single distribution (c.f. Sornette's "Dragon Kings")
- Build models of coupling <u>between</u> variables as well as model the bunching <u>within</u> one time
 16 June 2011 series --- SuperCats ?

In Memoriam:

- Benoit Mandelbrot (1924-2010)
- Per Bak (1948-2002)

nww@bas.ac.uk