
Mechanical thickness of the continents worldwide:

A re-analysis

Frederik J Simons
Princeton University

Dong V. Wang
UNC Chapel Hill

Lara M. Kalnins
University of Oxford



Ingredient 1: Topography 2/30



Ingredient 3: Free-air gravity 3/30



Ingredient 3: Bouguer gravity 4/30



The standard model 5/30
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Coherence 6/30

Flexural rigidity D in a simple two-layer lithosphere.
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The half-coherence wavelength 7/30
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Spectral analysis: bias & variance 8/30

Measuring the coherence between two stochastic fields, gravity and topography,

requires careful data tapering and averaging to suppress or control
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Spectral analysis: bias & variance 8/30

Measuring the coherence between two stochastic fields, gravity and topography,

requires careful data tapering and averaging to suppress or control

1. random effects,

2. random noise,

3. spectral leakage,

4. spectral bias,

5. spatial bias.

No matter how well we are able to measure coherence, the result is a non-Gaussian

quantity whose least-squares inversion under the Forsyth model with two parame-

ters has led to many different results. We have developed an alternative, but here

we’ll use coherence within the limits of the standard model.

Simons, GEM, 2011
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Azimuthal dependence — first pass (1400 km) 11/30
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Azimuthal dependence — third pass (1400 km) 13/30
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Wavenumber dependence (1400 km) 15/30
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Anisotropy, grid-based (1400 km) 19/30
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Elastic thickness, best estimate (1000 km) 21/30
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Elastic thickness, best estimate (1750 km) 23/30
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Elastic thickness, best estimate (3500 km) 24/30

easting (km)

no
rt

hi
ng

 (
km

)

−5500 0 3500
−4400

100

4600

 

 

T
e
 (km) with ρ = 2670, ∆ρ = 630 kgm−3, f2 = 0.5, E = 140 GPa, ν = 0.25
5 8 11 17 29 52 100

Wang & Simons 2011



Elastic thickness, best estimate (1400 km) 25/30

easting (km)

no
rt

hi
ng

 (
km

)

−3500 0 3500
2600

6100

9600

 

 

T
e
 (km) with ρ = 2670, ∆ρ = 630 kgm−3, f2 = 0.5, E = 140 GPa, ν = 0.25
5 8 11 17 29 52 100

Wang & Simons 2011



Elastic thickness, best estimate (1400 km) 26/30
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Elastic thickness, best estimate (1400 km) 27/30
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Geology matters

• With custom-designed Slepian analysis windows we can finally isolate the con-

tributions from individual regions; sometimes this is important

Anisotropy is real but complex

• Though the obtained directions receive an imprint from the topography and

gravity themselves; without a clear indication how to isolate the lithospheric

anisotropy from coherence analysis
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Conclusions – III 30/30

Coherence is dead

• There is just too much variability in the coherence to be able to tell the elastic

thickness to anything better than a factor of two, and sometimes not even that

• The case for anisotropy is tenuous and its relation to surface geology is not as

straightforward as it may seem from less conservative analyses

• We are finalizing a non-coherence maximum-likelihood estimation method

that outperforms all others and has been validated so far on synthetic data...

more to come


